Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 45(2): 337-341, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32873907

RESUMEN

The genetic influence in obesity prevalence is well described, but the role of genetic markers related to athletic strength/ endurance performance remains controversial. We investigated associations between obesity and the genetic polymorphisms alpha-actinin-3 (ACTN3) R577X and angiotensin-converting enzyme (ACE) I/D in schoolchildren aged 4-13 years from Southern Brazil. We collected sociodemographic data from parents through a questionnaire and conducted an anthropometric assessment. DNA was extracted from buccal cells and genotyping was performed by PCR. We found that 1.9% of the individuals were classified as low weight-for-age, 57.6% as normal weight and 40.5% as overweight/ obesity. Regarding allelic distribution, we found that 52.5% of individuals were DD, 30.8% ID, and 16.7% II for ACE; and 38.8% of individuals were RR, 40.2% RX and 21.0% XX for ACTN3. When both polymorphisms were combined, we observed a clear association between the composed genetic profile of these alleles and severe obesity in schoolchildren. Our data suggest that the combined analysis of ACTN3 R577X and ACE I/D polymorphisms may serve as a predictor for the risk of severe obesity in children. These data can contribute to a better understanding of the relationship between these polymorphisms and the body weight development of school-age children.


Asunto(s)
Actinina/genética , Obesidad Infantil/genética , Peptidil-Dipeptidasa A/genética , Adolescente , Brasil/epidemiología , Niño , Preescolar , Femenino , Genotipo , Humanos , Masculino , Polimorfismo Genético , Factores de Riesgo
2.
Clin Exp Hypertens ; 42(3): 233-238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31122077

RESUMEN

Background: This study aimed to verify the effects of high-intensity aerobic training (HIAT) on BP control and renin-angiotensin system (RAS) components in renal tissue of SHR. Ten SHRs received HIAT or control for 8-weeks. At the end of the training, the SBP showed a reduction of ~ 30mmHg (p < .01) in HIAT and increased by ~ 15 mmHg in the  control group. HIAT resulted in a higher release of nitrite, IL-6, ACE2 and ATR2. These results indicated an association between BP, NO and renal RAS.Abbreviations: JAA: writing, carried out all experimental procedures, performed statistical analysis, original draft and revised manuscript DMS: data interpretation, formal analysis, writing, editing and revised manuscript BAP: carried all experimental procedures, revised manuscritpt CPCG: carried all experimental procedures, revised manuscritpt MEN: experimental procedures, revised manuscript and data interpretation RWP: drafted and revised manuscript RCA: writing, experimental procedures, revised manuscript JP: writing, data interpretation and revised manuscript OLF: writing, original draft and revised manuscript.


Asunto(s)
Presión Sanguínea/fisiología , Hipertensión , Condicionamiento Físico Animal , Sistema Renina-Angiotensina/fisiología , Animales , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Hipertensión/terapia , Riñón/metabolismo , Masculino , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Ratas , Ratas Endogámicas SHR , Resultado del Tratamiento
3.
Int J Vitam Nutr Res ; 90(1-2): 113-123, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30545278

RESUMEN

ß-hydroxy-ß-methyl butyrate (HMB) is a bioactive metabolite derived from the amino acid leucine, usually applied for muscle mass increase during physical training, as well as for muscle mass maintenance in debilitating chronic diseases. The hypothesis of the present study is that HMB is a safe supplement for muscle mass gain by strength training. Based on this, the objective was to measure changes in body composition, glucose homeostasis and hepatic metabolism of HMB supplemented mice during strength training. Two of four groups of male mice (n = 6/group) underwent an 8-week training period session (climbing stairs) with or without HMB supplementation (190 mg/kgBW per day). We observed lower body mass gain (4.9 ± 0.43% versus 1.2 ± 0.43, p < 0.001) and increased liver mass (40.9 ± 0.9 mg/gBW versus 44.8 ± 1.3, p < 0.001) in the supplemented trained group compared with the non-supplemented groups. The supplemented trained group had an increase in relative adipose tissue mass (12.4 ± 0.63 mg/gBW versus 16.1 ± 0.88, P < 0.01) compared to the non-supplemented untrained group, and an increase in fasting blood glucose (111 ± 4.58 mg/dL versus 122 ± 3.70, P < 0.05) and insulin resistance (3.79 ± 0.19 % glucose decay/min versus 2.45 ± 0.28, P < 0.05) comparing with non-supplemented trained group. Adaptive heart hypertrophy was observed only in the non-supplemented trained group (4.82 ± 0.05 mg/gBW versus 5.12 ± 0.13, P < 0.05). There was a higher hepatic insulin-like growth factor-1 expression (P = 0.002) in supplemented untrained comparing with non-supplemented untrained group. Gene expression of gluconeogenesis regulatory factors was increased by training and reduced by HMB supplementation. These results confirm that HMB supplementation associated with intensive training protocol drives changes in glucose homeostasis and liver metabolism in mice.


Asunto(s)
Suplementos Dietéticos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Músculo Esquelético , Valeratos/metabolismo , Animales , Glucosa/química , Humanos , Hígado , Masculino , Ratones , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Valeratos/química
4.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33049997

RESUMEN

Cisplatin is a chemotherapy drug widely used in the treatment of solid tumors. However, nephrotoxicity has been reported in about one-third of patients undergoing cisplatin therapy. Proximal tubules are the main target of cisplatin toxicity and cellular uptake; elimination of this drug can modulate renal damage. Organic transporters play an important role in the transport of cisplatin into the kidney and organic cations transporter 2 (OCT-2) has been shown to be one of the most important transporters to play this role. On the other hand, multidrug and toxin extrusion 1 (MATE-1) transporter is the main protein that mediates the extrusion of cisplatin into the urine. Cisplatin nephrotoxicity has been shown to be enhanced by increased OCT-2 and/or reduced MATE-1 activity. Peroxisome proliferator-activated receptor alpha (PPAR-α) is the transcription factor which controls lipid metabolism and glucose homeostasis; it is highly expressed in the kidneys and interacts with both MATE-1 and OCT-2. Considering the above, we treated wild-type and PPAR-α knockout mice with cisplatin in order to evaluate the severity of nephrotoxicity. Cisplatin induced renal dysfunction, renal inflammation, apoptosis and tubular injury in wild-type mice, whereas PPAR-α deletion protected against these alterations. Moreover, we observed that cisplatin induced down-regulation of organic transporters MATE-1 and OCT-2 and that PPAR-α deletion restored the expression of these transporters. In addition, PPAR-α knockout mice at basal state showed increased MATE-1 expression and reduced OCT-2 levels. Here, we show for the first time that PPAR-α deletion protects against cisplatin nephrotoxicity and that this protection is via modulation of the organic transporters MATE-1 and OCT-2.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , PPAR alfa/genética , Insuficiencia Renal/inducido químicamente , Insuficiencia Renal/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Regulación hacia Abajo/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte de Catión Orgánico/genética , Transportador 2 de Cátion Orgánico/genética , PPAR alfa/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
5.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32708962

RESUMEN

Hypercholesterolemia, also called high cholesterol, is a form of hyperlipidemia, which may be a consequence of diet, obesity or diabetes. In addition, increased levels of low-density lipoprotein (LDL) and reduced levels of high-density lipoprotein (HDL) cholesterol are associated with a higher risk of atherosclerosis and coronary heart disease. Thus, controlling cholesterol levels is commonly necessary, and fibrates have been used as lipid-lowering drugs. Gemfibrozil is a fibrate that acts via peroxisome proliferator-activated receptor alpha to promote changes in lipid metabolism and decrease serum triglyceride levels. However, anemia and leukopenia are known side effects of gemfibrozil. Considering that gemfibrozil may lead to anemia and that gemfibrozil acts via peroxisome proliferator-activated receptor alpha, we treated wild-type and peroxisome proliferator-activated receptor alpha-knockout mice with gemfibrozil for four consecutive days. Gemfibrozil treatment led to anemia seven days after the first administration of the drug; we found reduced levels of hemoglobin, as well as red blood cells, white blood cells and a reduced percentage of hematocrits. PPAR-alpha-knockout mice were capable of reversing all of those reduced parameters induced by gemfibrozil treatment. Erythropoietin levels were increased in the serum of gemfibrozil-treated animals, and we also observed an increased expression of hypoxia-inducible factor-2 alpha (HIF-2α) and erythropoietin in renal tissue, while PPAR-alpha knockout mice treated with gemfibrozil did not present increased levels of serum erythropoietin or tissue HIF-2α and erythropoietin mRNA levels in the kidneys. We analyzed bone marrow and found that gemfibrozil reduced erythrocytes and hematopoietic stem cells in wild-type mice but not in PPAR-alpha-knockout mice, while increased colony-forming units were observed only in wild-type mice treated with gemfibrozil. Here, we show for the first time that gemfibrozil treatment leads to anemia and leukopenia via peroxisome proliferator-activated receptor alpha in mice.


Asunto(s)
Anemia/inducido químicamente , Gemfibrozilo/efectos adversos , Células Madre Hematopoyéticas/efectos de los fármacos , Hipolipemiantes/efectos adversos , Leucopenia/inducido químicamente , PPAR alfa/metabolismo , Anemia/metabolismo , Animales , Recuento de Células , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Leucopenia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Molecules ; 25(2)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963528

RESUMEN

Metformin is the first-line drug for type 2 diabetes mellitus control. It is established that this drug traffics through OCT-2 and MATE-1 transporters in kidney tubular cells and is excreted in its unaltered form in the urine. Hereby, we provide evidence that points towards the metformin-dependent upregulation of OCT-2 and MATE-1 in the kidney via the transcription factor proliferator-activated receptor alpha (PPARα). Treatment of wild type mice with metformin led to the upregulation of the expression of OCT-2 and MATE-1 by 34% and 157%, respectively. An analysis in a kidney tubular cell line revealed that metformin upregulated PPARα and OCT-2 expression by 37% and 299% respectively. MK-886, a PPARα antagonist, abrogated the OCT-2 upregulation by metformin and reduced MATE-1 expression. Conversely, gemfibrozil, an agonist of PPARα, elicited the increase of PPARα, OCT-2, and MATE-1 expression by 115%, 144%, and 376%, respectively. PPARα knockout mice failed to upregulate both the expression of OCT-2 and MATE-1 in the kidney upon metformin treatment, supporting the PPARα-dependent metformin upregulation of the transporters in this organ. Taken together, our data sheds light on the metformin-induced mechanism of transporter modulation in the kidney, via PPARα, and this effect may have implications for drug safety and efficacy.


Asunto(s)
Riñón/química , Metformina/administración & dosificación , Proteínas de Transporte de Catión Orgánico/genética , Transportador 2 de Cátion Orgánico/genética , PPAR alfa/genética , Animales , Línea Celular , Gemfibrozilo/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Indoles/farmacología , Riñón/efectos de los fármacos , Masculino , Metformina/farmacología , Ratones , Regulación hacia Arriba/efectos de los fármacos
7.
Mediators Inflamm ; 2019: 9086758, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31360120

RESUMEN

Macrophages contribute to a continuous increase in blood pressure and kidney damage in hypertension, but their polarization status and the underlying mechanisms have not been clarified. This study revealed an important role for M2 macrophages and the YM1/Chi3l3 protein in hypertensive nephropathy in a mouse model of hypertension. Bone marrow cells were isolated from the femurs and tibia of male FVB/N (control) and transgenic hypertensive animals that overexpressed the rat form of angiotensinogen (TGM(rAOGEN)123, TGM123-FVB/N). The cells were treated with murine M-CSF and subsequently with LPS+IFN-γ to promote their polarization into M1 macrophages and IL-4+IL-13 to trigger the M2 phenotype. We examined the kidneys of TGM123-FVB/N animals to assess macrophage polarization and end-organ damage. mRNA expression was evaluated using real-time PCR, and protein levels were assessed through ELISA, CBA, Western blot, and immunofluorescence. Histology confirmed high levels of renal collagen. Cells stimulated with LPS+IFN-γ in vitro showed no significant difference in the expression of CD86, an M1 marker, compared to cells from the controls or the hypertensive mice. When stimulated with IL-4+IL-13, however, macrophages of the hypertensive group showed a significant increase in CD206 expression, an M2 marker. The M2/M1 ratio reached 288%. Our results indicate that when stimulated in vitro, macrophages from hypertensive mice are predisposed toward polarization to an M2 phenotype. These data support results from the kidneys where we found an increased infiltration of macrophages predominantly polarized to M2 associated with high levels of YM1/Chi3l3 (91,89%), suggesting that YM1/Chi3l3 may be a biomarker of hypertensive nephropathy.


Asunto(s)
Hipertensión/metabolismo , Enfermedades Renales/metabolismo , Lectinas/metabolismo , Macrófagos/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Biomarcadores/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Riñón/metabolismo , Enfermedades Renales/genética , Lectinas/genética , Activación de Macrófagos/fisiología , Masculino , Ratones , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , beta-N-Acetilhexosaminidasas/genética
8.
Cell Biochem Funct ; 33(7): 435-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26467261

RESUMEN

Type 2 diabetes mellitus (T2D) results in several metabolic and cardiovascular dysfunctions, clinically characterized by hyperglycaemia due to lower glucose uptake and oxidation. Physical exercise is an effective intervention for glycaemic control. However, the effects of exercising at different intensities have not yet been addressed. The present study analysed the effects of 8 weeks of training performed at different exercise intensities on type 4 glucose transporters (GLUT4) content and glycaemic control of T2D (ob/ob) and non-diabetic mice (ob/OB). The animals were divided into six groups, with four groups being subjected either to low-intensity (ob/obL and ob/OBL: 3% body weight, three times/week/40 min) or high-intensity (ob/obH and ob/OBH: 6% body weight, three times per week per 20 min) swimming training. An incremental swimming test was performed to measure aerobic fitness. After the training intervention period, glycaemia and the content of GLUT4 were quantified. Although both training intensities were beneficial, the high-intensity regimen induced a more significant improvement in GLUT4 levels and glycaemic profile compared with sedentary controls (p < 0.05). Only animals in the high-intensity exercise group improved aerobic fitness. Thus, our study shows that high-intensity training was more effective for increasing GLUT4 content and glycaemia reduction in insulin-resistant mice, perhaps because of a higher metabolic demand imposed by this form of exercise.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Terapia por Ejercicio , Transportador de Glucosa de Tipo 4/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Ayuno/sangre , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Obesos
9.
Mol Cell Endocrinol ; 579: 112085, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827227

RESUMEN

Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.


Asunto(s)
Epinefrina , Cininas , Ratones , Animales , Homeostasis , Catecolaminas , Glucosa , Norepinefrina
10.
Eur J Appl Physiol ; 113(5): 1343-52, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23212119

RESUMEN

Exercise modulates both glucose and glutamine metabolism which influences lymphocyte function. We investigated the influence of chronic moderate exercise on glucose and glutamine metabolism in lymphocytes, the associated influence on proliferation, and cytokine and immunoglobulin production. Male Wistar rats (8 weeks old) were placed in an exercise training group (N = 15, 1 h day(-1) at 60 % VO2max, 5 days week(-1)) for 8 weeks of exercise, or a sedentary control group. Twenty-four hours following the final training session, lymphocytes were separated, and the incorporation of [U-14C]-glucose, [U-14C]-glutamine, and [2-14C]-thymidine from the supernatant was measured. The activity of glucose-6-phosphate dehydrogenase, hexokinase, and glutaminase was measured. Lymphocytes were stimulated with ConA and LPS and incubated with the Mycobacterium bovis bacille Calmette-Guerin (BCG) vaccine and plasma IgG and IgE were measured. Glutamine metabolism increased in both T and B lymphocytes in the trained group. In the trained group, proliferative capacity increased T lymphocytes under ConA stimulation, and increased B lymphocytes with LPS. There was a significant increase in IL-2 production and decrease in IL-4 in the trained group compared with sedentary controls. IL-2R and TNFR increased in trained rats while IL-4R decreased and were more pronounced in T lymphocytes compared with B lymphocytes. In both lymphocyte subsets, exercise training significantly increased the expression of CD54+ and CD30+ cell markers. Exercise training increased plasma IgG compared with the sedentary group. In conclusion, moderate exercise training improves immune function and metabolism in T and B lymphocytes, reflecting an increased ability to respond to immune challenges.


Asunto(s)
Linfocitos/inmunología , Esfuerzo Físico/inmunología , Animales , Citocinas/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Antígeno Ki-1/genética , Antígeno Ki-1/metabolismo , Lipopolisacáridos/inmunología , Activación de Linfocitos , Linfocitos/metabolismo , Masculino , Ratas , Ratas Wistar
11.
Biomedicines ; 11(8)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37626691

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a multifactorial, world public health problem that often develops as a consequence of acute kidney injury (AKI) and inflammation. Strategies are constantly sought to avoid and mitigate the irreversibility of this disease. One of these strategies is to decrease the inflammation features of AKI and, consequently, the transition to CKD. METHODS: C57Bl6J mice were anesthetized, and surgery was performed to induce unilateral ischemia/reperfusion as a model of AKI to CKD transition. For acute studies, the animals received the Kinin B1 receptor (B1R) antagonist before the surgery, and for the chronic model, the animals received one additional dose after the surgery. In addition, B1R genetically deficient mice were also challenged with ischemia/reperfusion. RESULTS: The absence and antagonism of B1R improved the kidney function following AKI and prevented CKD transition, as evidenced by the preserved renal function and prevention of fibrosis. The protective effect of B1R antagonism or deficiency was associated with increased levels of macrophage type 2 markers in the kidney. CONCLUSIONS: The B1R is pivotal to the evolution of AKI to CKD, and its antagonism shows potential as a therapeutic tool in the prevention of CKD following AKI.

12.
Lab Invest ; 92(10): 1419-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22868909

RESUMEN

The kallikrein-kinin system (KKS) has been previously linked to glucose homeostasis. In isolated muscle or fat cells, acute bradykinin (BK) stimulation was shown to improve insulin action and increase glucose uptake by promoting glucose transporter 4 translocation to plasma membrane. However, the role for BK in the pathophysiology of obesity and type 2 diabetes remains largely unknown. To address this, we generated genetically obese mice (ob/ob) lacking the BK B2 receptor (obB2KO). Despite similar body weight or fat accumulation, obB2KO mice showed increased fasting glycemia (162.3 ± 28.2 mg/dl vs 85.3 ± 13.3 mg/dl), hyperinsulinemia (7.71 ± 1.75 ng/ml vs 4.09 ± 0.51 ng/ml) and impaired glucose tolerance when compared with ob/ob control mice (obWT), indicating insulin resistance and impaired glucose homeostasis. This was corroborated by increased glucose production in response to a pyruvate challenge. Increased gluconeogenesis was accompanied by increased hepatic mRNA expression of forkhead box protein O1 (FoxO1, four-fold), peroxisome proliferator-activated receptor gamma co-activator 1-alpha (seven-fold), phosphoenolpyruvate carboxykinase (PEPCK, three-fold) and glucose-6-phosphatase (eight-fold). FoxO1 nuclear exclusion was also impaired, as the obB2KO mice showed increased levels of this transcription factor in the nucleus fraction of liver homogenates during random feeding. Intraportal injection of BK in lean mice was able to decrease the hepatic mRNA expression of FoxO1 and PEPCK. In conclusion, BK modulates glucose homeostasis by affecting hepatic glucose production in obWT. These results point to a protective role of the KKS in the pathophysiology of type 2 diabetes mellitus.


Asunto(s)
Bradiquinina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Gluconeogénesis/fisiología , Glucosa/metabolismo , Hígado/metabolismo , Receptores de Bradiquinina/metabolismo , Análisis de Varianza , Animales , Bradiquinina/administración & dosificación , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Gluconeogénesis/efectos de los fármacos , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Sistema Calicreína-Quinina/fisiología , Leptina/metabolismo , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , PPAR gamma/genética , PPAR gamma/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Ratas , Receptores de Bradiquinina/genética
13.
Life Sci ; 309: 121034, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208659

RESUMEN

The Kallikrein-Kinin System (KKS) plays an important role in energy metabolism. We have previously described the importance of the kinin B1 receptor (B1R) in metabolism regulation. Considering that the liver manages the different energy demands of different body tissues, we combined two stressful conditions - fasting and voluntary exercise - to address how B1R may affect liver metabolism, focusing on mitochondrial function. AIMS: To investigate how the kinin B1 receptor (B1R) modulates mitochondrial activity under stress conditions, focusing on the rate of energy expenditure and shift in metabolism. MAIN METHODS: Wild-type and B1R-knockout (B1KO) male mice remained in a calorimetric cage with a wheel for 7 days; 48 h before euthanasia, half of the animals from both groups were submitted to fasting conditions. Mitochondrial activity, ketone bodies, and gene expression involving mitochondrial activity were evaluated. KEY FINDINGS: B1R modulates the mitochondrial activity under fasting and voluntary exercise, reducing the VO2 expenditure and HEAT. B1KO animals who exercised and underwent fasting did not have increased glucose levels, suggesting a preference for lipids as an energy source. Moreover, these animals displayed RER around 0.8, which indicates a ß-oxidation increment. Interestingly, the lack of B1R did not induce mitochondrial activity and biogenesis, suggesting interference in metabolism responsivity, a condition modulated by sirtuins under PGC-1α control. SIGNIFICANCE: B1R modulates mitochondrial respiratory control ratios, which suggests metabolic suppression, influencing hepatic metabolism and, consequently, energy homeostasis.


Asunto(s)
Receptor de Bradiquinina B1 , Sirtuinas , Ratones , Animales , Masculino , Receptor de Bradiquinina B1/genética , Cininas , Ayuno , Mitocondrias/metabolismo , Cuerpos Cetónicos , Glucosa , Lípidos , Receptor de Bradiquinina B2/genética
14.
Peptides ; 137: 170491, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412234

RESUMEN

Previous reports reveal that +9/-9 polymorphism of the bradykinin B2 receptor (BDKRB2) is suggestive of cardiometabolic diseases. The aim of this study was to examine the impact of BDKRB2 + 9/-9 polymorphism genotypes on the blood pressure parameters and microvascular function in prepubescent children. We screened for BDKRB2 + 9/-9 polymorphism in the DNA of 145 children (86 boys and 59 girls), and its association with body composition, blood pressure levels, biochemical parameters, and endothelial function was determined. No significant association of the BDKRB2 genotypes with gender (P=0.377), race (P=0.949) or family history of cardiovascular disease (CVD) (P=0.858) was observed. Moreover, we did not identify any interaction between BDKRB2 genotypes with a phenotype of obesity (P=0.144). Children carrying the +9/+9 genotype exhibited a significant linear trend with higher levels of systolic blood pressure and pulse pressure (P<0.001). Moreover, the presence of +9 allele resulted in a decrease of reactive hyperemia index, showing a decreasing linear trend from -9/-9 to +9/+9, wherein this parameter of endothelial function was the lowest in the +9/+9 children, intermediate in the +9/-9 children, and the highest in the -9/-9 children (P<0.001). There was a significant inverse correlation between reactive hyperemia index and systolic blood pressure (r= - 0.348, P< 0.001) and pulse pressure (r= - 0.399, P< 0.001). Our findings indicate that the +9/+9 BDKRB2 genotype was associated with high blood pressure and microvascular dysfunction in prepubescent Brazilian children.


Asunto(s)
Presión Sanguínea/genética , Síndrome Metabólico/genética , Microcirculación/genética , Polimorfismo Genético , Receptor de Bradiquinina B2/genética , Población Negra/genética , Brasil/epidemiología , Niño , Femenino , Genotipo , Humanos , Hiperemia/genética , Hiperemia/fisiopatología , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Síndrome Metabólico/epidemiología , Síndrome Metabólico/fisiopatología , Grupos Raciales/genética , Población Blanca/genética
15.
Sci Rep ; 11(1): 11456, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075113

RESUMEN

Several cytokines have been reported to participate in spermatogenesis, including interleukin-6 (IL6). However, not many studies have been conducted on the loss of Il6 on the male reproductive tract. Nonetheless, there is considerable knowledge regarding the pathological and physiological role of IL6 on spermatogenesis. In this way, this study evaluated the impact of Il6 deficiency on mice testicles in the absence of infection or inflammation. We showed that Il6 deficiency increases daily sperm production, the number of spermatids, and the testicular testosterone and dihydrotestosterone levels. Besides that, mice with a deleted Il6 (IL6KO) showed increased testicular SOCS3 levels, with no changes in pJAK/JAK and pSTAT3/STAT3 ratios. It is worth noting that the aforementioned pathway is not the only pathway to up-regulate SOCS3, nor is it the only SOCS3 target, thus proposing that the increase of SOCS3 in the testis occurs independently of the JAK-STAT signaling in IL6KO mice. Therefore, we suggest that the lack of Il6 drives androgenic production by increasing SOCS3 in the testis, thus leading to an increase in spermatogenesis.


Asunto(s)
Regulación de la Expresión Génica , Interleucina-6/deficiencia , Transducción de Señal , Espermatogénesis , Proteína 3 Supresora de la Señalización de Citocinas/biosíntesis , Testículo/metabolismo , Animales , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína 3 Supresora de la Señalización de Citocinas/genética
16.
Biomedicines ; 9(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34356833

RESUMEN

Anemia is a common feature of chronic kidney disease (CKD). It is a process related to erythropoietin deficiency, shortened erythrocyte survival, uremic erythropoiesis inhibitors, and disordered iron homeostasis. Animal models of CKD-induced anemia are missing and would be desirable in order to study anemia mechanisms and facilitate the development of novel therapeutic tools. We induced three different models of CKD in mice and evaluated the development of anemia characteristics. Mice were subjected to unilateral ischemia-reperfusion or received repeated low doses of cisplatin or folic acid to induce nephropathy. Renal function, kidney injury and fibrotic markers were measured to confirm CKD. Moreover, serum hemoglobin, ferritin and erythropoietin were analyzed. Renal mRNA levels of HIF-2α, erythropoietin, hepcidin, GATA-2, and GATA-2 target genes were also determined. All three CKD models presented increased levels of creatinine, urea, and proteinuria. Renal up-regulation of NGAL, KIM-1, and TNF-α mRNA levels was observed. Moreover, the three CKD models developed fibrosis and presented increased fibrotic markers and α-SMA protein levels. CKD induced decreased hemoglobin and ferritin levels and increased erythropoietin levels in the serum. Renal tissue showed decreased erythropoietin and HIF-2α mRNA levels, while an increase in the iron metabolism regulator hepcidin was observed. GATA-2 transcription factor (erythropoietin repressor) mRNA levels were increased in all CKD models, as well as its target genes. We established three models of CKD-induced anemia, regardless of the mechanism and severity of kidney injury.

17.
Nutrients ; 13(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201185

RESUMEN

High-protein diets (HPDs) are widely accepted as a way to stimulate muscle protein synthesis when combined with resistance training (RT). However, the effects of HPDs on adipose tissue plasticity and local inflammation are yet to be determined. This study investigated the impact of HPDs on glucose control, adipocyte size, and epididymal adipose inflammatory biomarkers in resistance-trained rats. Eighteen Wistar rats were randomly assigned to four groups: normal-protein (NPD; 17% protein total dietary intake) and HPD (26.1% protein) without RT and NPD and HPD with RT. Trained groups received RT for 12 weeks with weights secured to their tails. Glucose and insulin tolerance tests, adipocyte size, and an array of cytokines were determined. While HPD without RT induced glucose intolerance, enlarged adipocytes, and increased TNF-α, MCP-1, and IL1-ß levels in epididymal adipose tissue (p < 0.05), RT diminished these deleterious effects, with the HPD + RT group displaying improved blood glucose control without inflammatory cytokine increases in epididymal adipose tissue (p < 0.05). Furthermore, RT increased glutathione expression independent of diet (p < 0.05). RT may offer protection against adipocyte hypertrophy, pro-inflammatory states, and glucose intolerance during HPDs. The results highlight the potential protective effects of RT to mitigate the maladaptive effects of HPDs.


Asunto(s)
Glucemia/metabolismo , Dieta Rica en Proteínas , Inflamación/sangre , Grasa Intraabdominal/patología , Entrenamiento de Fuerza , Adipocitos/patología , Animales , Tamaño de la Célula , Dieta , Epidídimo/patología , Glutatión/metabolismo , Resistencia a la Insulina , Masculino , Tamaño de los Órganos , Ratas Wistar , Aumento de Peso
18.
Cancer Sci ; 101(2): 453-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19961492

RESUMEN

To assess the importance of carbohydrate moieties to the anti-angiogenic activity of plasminogen fragments, we cloned the fragment corresponding to amino acids Val(79) to Thr(346) (Kint3-4) that presents the three glycosylation sites. The activity of glycosylated and unglycosylated Kint3-4 was tested in murine sponge implant model. We observed a significant decrease in the neovascularization on the sponge after treatment with Kint3-4 by histological examination and determination of the hemoglobin levels. The effects were more intense with the glycosylated than the unglycosylated protein. (99m)Technecium-labeled red blood cells confirmed the inhibition of cell infiltration in the implanted sponge. Studies using melanoma B16F1 implanted in a mouse demonstrated that treatment with glycosylated Kint3-4 (0.15 nmol/48 h) during 14 days suppresses tumor growth by 80%. The vascular endothelial growth factor mRNA levels on the tumor were reduced after treatment. Kint3-4 is a potent plasminogen fragment that has been found to inhibit tumor growth.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Fragmentos de Péptidos/farmacología , Plasminógeno/farmacología , Secuencia de Aminoácidos , Animales , Glicosilación , Humanos , Integrina alfaVbeta3/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Plasminógeno/química , Factor A de Crecimiento Endotelial Vascular/genética
19.
Front Physiol ; 11: 768, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765291

RESUMEN

Introduction: Lipopolysaccharide (LPS) is a systemic response-triggering endotoxin, which has the kidney as one of its first targets, thus causing acute injuries to this organ. Physical exercise is capable of promoting physiological alterations and modulating inflammatory responses in the infectious process through multiple parameters, including the toll-like receptor (TLR)-4 pathway, which is the main LPS signaling in sepsis. Additionally, previous studies have shown that physical exercise can be both a protector factor and an aggravating factor for some kidney diseases. This study aims at analyzing whether physical exercise before the induction of LPS endotoxemia can protect kidneys from acute kidney injury. Methods: C57BL/6J male mice, 12 weeks old, were distributed into four groups: (1) sedentary (control, N = 7); (2) sedentary + LPS (N = 7); (3) trained (N = 7); and (4) trained + LPS (N = 7). In the training groups, the animals exercised 5×/week in a treadmill, 60 min/day, for 4 weeks (60% of max. velocity). Sepsis was induced in the training group by the application of a single dose of LPS (5 mg/kg i.p.). Sedentary animals received LPS on the same day, and the non-LPS groups received a saline solution instead. All animals were euthanized 24 h after the administration of LPS or saline. Results: The groups receiving LPS presented a significant increase in serum urea (p < 0.0001) and creatinine (p < 0.001) concentration and renal gene expression of inflammatory markers, such as tumor necrosis factor alpha and interleukin-6, as well as TLRs. In addition, LPS promoted a decrease in reduced glutathione. Compared to the sedentary + LPS group, trained + LPS showed overexpression of a gene related to kidney injury (NGAL, p < 0.01) and the protein levels of LPS receptor TLR-4 (p < 0.01). Trained + LPS animals showed an expansion of the tubulointerstitial space in the kidney (p < 0.05) and a decrease in the gene expression of hepatic AOAH (p < 0.01), an enzyme involved in LPS clearance. Conclusion: In contrast to our hypothesis, training was unable to mitigate the renal inflammatory response caused by LPS. On the contrary, it seems to enhance injury by accentuating endotoxin-induced TLR-4 signaling. This effect could be partly due to the modulation of a hepatic enzyme that detoxifies LPS.

20.
Life Sci ; 263: 118583, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33045212

RESUMEN

Parental lifestyle has been related to alterations in the phenotype of their offspring. Obese sires can induce offspring insulin resistance as well as increase susceptibility to obesity. On the other hand, obese sires submitted to voluntary exercise ameliorate the deleterious metabolic effects on their offspring. However, there are no studies reporting the effect of programmed exercise training of lean sires on offspring metabolism. AIMS: This study aimed to investigate the role of swimming training of sires for 6 weeks on the offspring metabolic phenotype. MAIN METHODS: Male C57BL/6 mice fed a control diet were divided into sedentary and swimming groups. After the exercise, they were mated with sedentary females, and body weight and molecular parameters of the offspring were subsequently monitored. KEY FINDINGS: Swimming decreased the gene expression of Fasn and Acaca in the testes and increased the AMPK protein content in the testes and epididymis of the sires. The progeny presented a low weight at P1, which reached a normal level at P60 and at P90 the animals were challenged with HFD for 16 weeks. The male offspring of trained sires presented less body weight gain than the control group. The level of steatosis decreased in the male offspring from trained sires. The gene expression of Prkaa2, Ppar-1α and Cpt-1 was also increased in the liver of male offspring from trained sires. SIGNIFICANCE: Taken together, these findings suggest that paternal exercise training can improve the metabolic profile in the liver of the progeny, thereby ameliorating the effects of obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hígado Graso/prevención & control , Obesidad/complicaciones , Condicionamiento Físico Animal/fisiología , Animales , Padre , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Conducta Sedentaria , Natación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA