Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 167(4): 571-581, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37874764

RESUMEN

In the central nervous system, microglia are responsible for removing infectious agents, damaged/dead cells, and amyloid plaques by phagocytosis. Other cell types, such as astrocytes, are also recently recognized to show phagocytotic activity under some conditions. Oligodendrocyte precursor cells (OPCs), which belong to the same glial cell family as microglia and astrocytes, may have similar functions. However, it remains largely unknown whether OPCs exhibit phagocytic activity against foreign materials like microglia. To answer this question, we examined the phagocytosis activity of OPCs using primary rat OPC cultures. Since innate phagocytosis activity could trigger cell death pathways, we also investigated whether participating in phagocytosis activity may lead to OPC cell death. Our data shows that cultured OPCs phagocytosed myelin-debris-rich lysates prepared from rat corpus callosum, without progressing to cell death. In contrast to OPCs, mature oligodendrocytes did not show phagocytotic activity against the bait. OPCs also exhibited phagocytosis towards lysates of rat brain cortex and cell membrane debris from cultured astrocytes, but the percentage of OPCs that phagocytosed beta-amyloid was much lower than the myelin debris. We then conducted RNA-seq experiments to examine the transcriptome profile of OPC cultures and found that myelination- and migration-associated genes were downregulated 24 h after phagocytosis. On the other hand, there were a few upregulated genes in OPCs 24 h after phagocytosis. These data confirm that OPCs play a role in debris removal and suggest that OPCs may remain in a quiescent state after phagocytosis.


Asunto(s)
Células Precursoras de Oligodendrocitos , Ratas , Animales , Células Precursoras de Oligodendrocitos/fisiología , Diferenciación Celular/fisiología , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Fagocitosis/genética , Células Cultivadas
2.
Neurobiol Dis ; 181: 106120, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37044366

RESUMEN

The neurovascular unit is where two very distinct physiological systems meet: The central nervous system (CNS) and the blood. The permeability of the barriers separating these systems is regulated by time, including both the 24 h circadian clock and the longer processes of aging. An endogenous circadian rhythm regulates the transport of molecules across the blood-brain barrier and the circulation of the cerebrospinal fluid and the glymphatic system. These fluid dynamics change with time of day, and with age, and especially in the context of neurodegeneration. Factors may differ depending on brain region, as can be highlighted by consideration of circadian regulation of the neurovascular niche in white matter. As an example of a potential target for clinical applications, we highlight chaperone-mediated autophagy as one mechanism at the intersection of circadian dysregulation, aging and neurodegenerative disease. In this review we emphasize key areas for future research.


Asunto(s)
Relojes Circadianos , Enfermedades Neurodegenerativas , Sustancia Blanca , Humanos , Relojes Circadianos/fisiología , Envejecimiento/fisiología , Ritmo Circadiano/fisiología
3.
Stroke ; 53(12): 3741-3750, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36252110

RESUMEN

BACKGROUND: It has been reported that the S1P (sphingosine 1-phosphate) receptor modulator fingolimod reduces infarction in rodent models of stroke. Recent studies have suggested that circadian rhythms affect stroke and neuroprotection. Therefore, this study revisited the use of fingolimod in mouse focal cerebral ischemia to test the hypothesis that efficacy might depend on whether experiments were performed during the inactive sleep or active wake phases of the circadian cycle. METHODS: Two different stroke models were implemented in male C57Bl/6 mice-transient middle cerebral artery occlusion and permanent distal middle cerebral artery occlusion. Occlusion occurred either during inactive or active circadian phases. Mice were treated with 1 mg/kg fingolimod at 30- or 60-minute postocclusion and 1 day later for permanent and transient middle cerebral artery occlusion, respectively. Infarct volume, brain swelling, hemorrhagic transformation, and behavioral outcome were assessed at 2 or 3 days poststroke. Three independent experiments were performed in 2 different laboratories. RESULTS: Fingolimod decreased peripheral lymphocyte number in naive mice, as expected. However, it did not significantly affect infarct volume, brain swelling, hemorrhagic transformation, or behavioral outcome at 2 or 3 days after transient or permanent focal cerebral ischemia during inactive or active circadian phases of stroke onset. CONCLUSIONS: Outcomes were not improved by fingolimod in either transient or permanent focal cerebral ischemia during both active and inactive circadian phases. These negative findings suggest that further testing of fingolimod in clinical trials may not be warranted unless translational studies can identify factors associated with fingolimod's efficacy or lack thereof.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Accidente Cerebrovascular , Animales , Ratones , Masculino , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Edema Encefálico/tratamiento farmacológico , Esfingosina , Accidente Cerebrovascular/tratamiento farmacológico , Ratones Endogámicos C57BL , Hemorragia/tratamiento farmacológico , Modelos Animales de Enfermedad
4.
Stroke ; 53(7): 2369-2376, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35656825

RESUMEN

BACKGROUND: Subcortical white matter lesions are exceedingly common in cerebral small vessel disease and lead to significant cumulative disability without an available treatment. Here, we tested a rho-kinase inhibitor on functional recovery after focal white matter injury. METHODS: A focal corpus callosum lesion was induced by stereotactic injection of N5-(1-iminoethyl)-L-ornithine in mice. Fasudil (10 mg/kg) or vehicle was administered daily for 2 weeks, starting one day after lesion induction. Resting-state functional connectivity and grid walk performance were studied longitudinally, and lesion volumes were determined at one month. RESULTS: Resting-state interhemispheric functional connectivity significantly recovered between days 1 and 14 in the fasudil group (P<0.001), despite worse initial connectivity loss than vehicle before treatment onset. Grid walk test revealed an increased number of foot faults in the vehicle group compared with baseline, which persisted for at least 4 weeks. In contrast, the fasudil arm did not show an increase in foot faults and had smaller lesions at 4 weeks. Immunohistochemical examination of reactive astrocytosis, synaptic density, and mature oligodendrocytes did not reveal a significant difference between treatment arms. CONCLUSIONS: These data show that delayed fasudil posttreatment improves functional outcomes after a focal subcortical white matter lesion in mice. Future work will aim to elucidate the mechanisms.


Asunto(s)
Leucoaraiosis , Sustancia Blanca , Animales , Cuerpo Calloso , Humanos , Ratones , Recuperación de la Función , Quinasas Asociadas a rho
5.
Handb Exp Pharmacol ; 273: 267-293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33580391

RESUMEN

The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Barrera Hematoencefálica , Células Endoteliales , Humanos , Pericitos
6.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216347

RESUMEN

Oligodendrocyte precursor cells (OPCs) serve as progenitor cells of terminally differentiated oligodendrocytes. Past studies have confirmed the importance of epigenetic system in OPC differentiation to oligodendrocytes. High mobility group A1 (HMGA1) is a small non-histone nuclear protein that binds DNA and modifies the chromatin conformational state. However, it is still completely unknown about the roles of HMGA1 in the process of OPC differentiation. In this study, we prepared primary OPC cultures from the neonatal rat cortex and examined whether the loss- and gain-of-function of HMGA1 would change the mRNA levels of oligodendrocyte markers, such as Cnp, Mbp, Myrf and Plp during the process of OPC differentiation. In our system, the mRNA levels of Cnp, Mbp, Myrf and Plp increased depending on the oligodendrocyte maturation step, but the level of Hmga1 mRNA decreased. When HMGA1 was knocked down by a siRNA approach, the mRNA levels of Cnp, Mbp, Myrf and Plp were smaller in OPCs with Hmga1 siRNA compared to the ones in the control OPCs. On the contrary, when HMGA1 expression was increased by transfection of the Hmga1 plasmid, the mRNA levels of Cnp, Mbp, Myrf and Plp were slightly larger compared to the ones in the control OPCs. These data may suggest that HMGA1 participates in the process of OPC differentiation by regulating the mRNA expression level of myelin-related genes.


Asunto(s)
Marcadores Genéticos/genética , Proteína HMGA1a/genética , Células Precursoras de Oligodendrocitos/metabolismo , Transcripción Genética/genética , Animales , Diferenciación Celular/genética , Vaina de Mielina/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas , Células Madre/metabolismo
7.
Stroke ; 52(5): 1861-1865, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33840224

RESUMEN

Background and Purpose: Physical exercise offers therapeutic potentials for several central nervous system disorders, including stroke and cardiovascular diseases. However, it is still mostly unknown whether and how exercise preconditioning affects the prognosis of intracerebral hemorrhage (ICH). In this study, we examined the effects of preconditioning on ICH pathology in mature adult mice using treadmill exercise. Methods: Male C57BL/6J (25-week old) mice were subjected to 6 weeks of treadmill exercise followed by ICH induction. Outcome measurements included various neurological function tests at multiple time points and the assessment of lesion volume at 8 days after ICH induction. In addition, plasma soluble factors and phagocytotic microglial numbers in the peri-lesion area were also measured to determine the mechanisms underlying the effects of exercise preconditioning. Results: The 6-week treadmill exercise preconditioning promoted recovery from ICH-induced neurological deficits in mice. In addition, mice with exercise preconditioning showed smaller lesion volumes and increased numbers of phagocytotic microglia. Furthermore, the levels of several soluble factors, including endostatin, IGFBP (insulin-like growth factor-binding protein)-2 and -3, MMP (matrix metallopeptidase)-9, osteopontin, and pentraxin-3, were increased in the plasma samples from ICH mice with exercise preconditioning compared with ICH mice without exercise. Conclusions: These results suggest that mice with exercise preconditioning may suffer less severe injury from hemorrhagic stroke, and therefore, a habit of physical exercise may improve brain health even in middle adulthood.


Asunto(s)
Hemorragia Cerebral/fisiopatología , Condicionamiento Físico Animal/fisiología , Recuperación de la Función/fisiología , Animales , Proteína C-Reactiva/metabolismo , Hemorragia Cerebral/sangre , Endostatinas/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Masculino , Metaloproteinasas de la Matriz/sangre , Ratones , Microglía , Osteopontina/sangre , Componente Amiloide P Sérico/metabolismo
8.
Int Heart J ; 62(3): 510-519, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-33994509

RESUMEN

A recent thinner strut drug-eluting stent might facilitate early strut coverage after its placement. We aimed to investigate early vascular healing responses after the placement of an ultrathin-strut bioresorbable-polymer sirolimus-eluting stent (BP-SES) compared to those with a durable-polymer everolimus-eluting stent (DP-EES) using optical coherence tomography (OCT) imaging.This study included 40 patients with chronic coronary syndrome (CCS) who underwent OCT-guided percutaneous coronary intervention (PCI). Twenty patients each received either BP-SES or DP-EES implantation. OCT was performed immediately after stent placement (baseline) and at 1-month follow-up.At one month, the percentage of uncovered struts reduced significantly in both the BP-SES (80.9 ± 10.3% to 2.9 ± 1.7%; P < 0.001) and DP-EES (81.9 ± 13.0% to 5.7 ± 1.8%; P < 0.001) groups, and the percentage was lower in the BP-SES group than in the DP-EES group (P < 0.001). In the BP-SES group, the percentage of malapposed struts also decreased significantly at 1 month (4.9 ± 3.7% to 2.6 ± 3.0%; P = 0.025), which was comparable to that of the DP-EES group (2.5 ± 2.2%; P = 0.860). The optimal cut-off value of the distance between the strut and vessel surface immediately after the placement to predict resolved malapposed struts was ≤ 160 µm for BP-SES and ≤ 190 µm for DP-EES.Compared to DP-EES, ultrathin-strut BP-SES demonstrated favorable vascular responses at one month, with a lower rate of uncovered struts and a comparable rate of malapposed struts.


Asunto(s)
Implantes Absorbibles/estadística & datos numéricos , Enfermedad Coronaria/cirugía , Stents Liberadores de Fármacos/estadística & datos numéricos , Intervención Coronaria Percutánea/instrumentación , Anciano , Anciano de 80 o más Años , Antineoplásicos/administración & dosificación , Enfermedad Coronaria/diagnóstico por imagen , Everolimus/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sirolimus/administración & dosificación , Tomografía de Coherencia Óptica
9.
Int Heart J ; 62(1): 42-49, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518665

RESUMEN

Recent clinical studies suggest that newer-generation drug-eluting stents that combine ultrathin struts and nanocoating (biodegradable polymer sirolimus-eluting stents, BP-SES) could improve long-term clinical outcomes in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). However, the early vascular response to BP-SES in these patients has not been investigated so far.We examined this response in 20 patients with STEMI caused by plaque rupture using frequency-domain optical coherence tomography (OCT) to understand the underlying mechanisms. Plaque rupture was diagnosed by OCT before PCI with BP-SES implantation was performed. OCT was again performed before the final angiography (post-PCI) and after 2 weeks (2W-OCT).BP-SES placement caused protrusion of atherothrombotic material into the stent lumen and incomplete stent apposition in all patients. After 2 weeks, incomplete stent apposition was significantly reduced (% malapposed struts: post-PCI 4.7 ± 3.3%; 2W-OCT 0.9 ± 1.2%; P < 0.0001), and the percentage of uncovered struts also significantly decreased (% uncovered struts: post-PCI; 69.8 ± 18.3%: 2W-OCT; 29.6 ± 11.0%, P < 0.0001). The maximum protrusion area of the atherothrombotic burden was significantly reduced (post-PCI 1.36 ± 0.70 mm2; 2W-OCT 0.98 ± 0.55 mm2; P = 0.004).This study on the early vascular responses following BP-SES implantation showed rapid resolution of atherothrombotic material and progression of strut apposition and coverage. (UMIN000041324).


Asunto(s)
Circulación Coronaria , Stents Liberadores de Fármacos/estadística & datos numéricos , Intervención Coronaria Percutánea/instrumentación , Infarto del Miocardio con Elevación del ST/cirugía , Anciano , Antibióticos Antineoplásicos/administración & dosificación , Vasos Coronarios/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Sirolimus/administración & dosificación , Tomografía de Coherencia Óptica , Resultado del Tratamiento
10.
Glia ; 68(7): 1435-1444, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32057146

RESUMEN

Upon infection or brain damage, microglia are activated to play roles in immune responses, including phagocytosis and soluble factor release. However, little is known whether the event of phagocytosis could be a trigger for releasing soluble factors from microglia. In this study, we tested if microglia secrete a neurovascular mediator matrix metalloproteinase-9 (MMP-9) after phagocytosis in vitro. Primary microglial cultures were prepared from neonatal rat brains. Cultured microglia phagocytosed Escherichia coli bioparticles within 2 hr after incubation and started to secrete MMP-9 at around 12 hr after the phagocytosis. A TLR4 inhibitor TAK242 suppressed the E. coli-bioparticle-induced MMP-9 secretion. However, TAK242 did not change the engulfment of E. coli bioparticles in microglial cultures. Because lipopolysaccharides (LPS), the major component of the outer membrane of E. coli, also induced MMP-9 secretion in a dose-response manner and because the response was inhibited by TAK242 treatment, we assumed that the LPS-TLR4 pathway, which was activated by adhering to the substance, but not through the engulfing process of phagocytosis, would play a role in releasing MMP-9 from microglia after E. coli bioparticle treatment. To support the finding that the engulfing step would not be a critical trigger for MMP-9 secretion after the event of phagocytosis in microglia, we confirmed that cell debris and amyloid beta were both captured into microglia via phagocytosis, but neither of them induced MMP-9 secretion from microglia. Taken together, these data demonstrate that microglial response in MMP-9 secretion after phagocytosis differs depending on the types of particles/substances that microglia encountered.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Microglía/metabolismo , Fagocitosis/fisiología , Animales , Células Cultivadas , Escherichia coli/metabolismo , Lipopolisacáridos/farmacología , Ratas
11.
J Infect Chemother ; 26(1): 110-114, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31266705

RESUMEN

Unusual community-acquired invasive Klebsiella pneumoniae infection has been reported worldwide, particularly in Asia. Recently, several virulence-associated genes of the isolates have been investigated. We report a case of multifocal intramuscular and musculoskeletal abscesses caused by K. pneumoniae in a 61-year-old male diabetes patient. A string test of the K. pneumoniae isolate, which was recovered from abscesses obtained by surgical debridement and drainage, was positive. We used whole-genome sequencing to analyze the virulence-associated gene profile of the isolate. The isolate belonged to the K2 genotype with sequence type 375. The isolate harbored rmpA and rmpA2, which induce serum resistance (hypermucoviscosity). The isolate also carried siderophores, i.e., aerobactin and salmochelin, which are associated with enhanced bacterial growth. The isolate did not harbor K1-unique virulence factors, such as colibactin, microcin, and yersiniabactin. Our K2 strain harbored a combination of virulence plasmid-associated genes-rmpA/A2 and siderophores (aerobactin and salmochelin). Hence, we advocate that essential molecular virulence factors of isolates that cannot be identified by a string test and capsular serotyping alone may exist.


Asunto(s)
Complicaciones de la Diabetes , Infecciones por Klebsiella , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Infecciones de los Tejidos Blandos , Factores de Virulencia/genética , ADN Bacteriano/genética , Complicaciones de la Diabetes/diagnóstico , Complicaciones de la Diabetes/microbiología , Mano/microbiología , Mano/patología , Humanos , Infecciones por Klebsiella/complicaciones , Infecciones por Klebsiella/diagnóstico , Infecciones por Klebsiella/microbiología , Masculino , Persona de Mediana Edad , Tipificación Molecular , Infecciones de los Tejidos Blandos/complicaciones , Infecciones de los Tejidos Blandos/diagnóstico , Infecciones de los Tejidos Blandos/microbiología , Secuenciación Completa del Genoma
12.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260683

RESUMEN

A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that associates with intracellular molecules to regulate multiple signal transductions. Although the roles of AKAP12 in the central nervous system are still relatively understudied, it was previously shown that AKAP12 regulates blood-retinal barrier formation. In this study, we asked whether AKAP12 also supports the function and integrity of the blood-brain barrier (BBB). In a mouse model of focal ischemia, the expression level of AKAP12 in cerebral endothelial cells was upregulated during the acute phase of stroke. Also, in cultured cerebral endothelial cells, oxygen-glucose deprivation induced the upregulation of AKAP12. When AKAP12 expression was suppressed by an siRNA approach in cultured endothelial cells, endothelial permeability was increased along with the dysregulation of ZO-1/Claudin 5 expression. In addition, the loss of AKAP12 expression caused an upregulation/activation of the Rho kinase pathway, and treatment of Rho kinase inhibitor Y-27632 mitigated the increase of endothelial permeability in AKAP12-deficient endothelial cell cultures. These in vitro findings were confirmed by our in vivo experiments using Akap12 knockout mice. Compared to wild-type mice, Akap12 knockout mice showed a larger extent of BBB damage after stroke. However, the inhibition of rho kinase by Y-27632 tightened the BBB in Akap12 knockout mice. These data may suggest that endogenous AKAP12 works to alleviate the damage and dysfunction of the BBB caused by ischemic stress. Therefore, the AKAP12-rho-kinase signaling pathway represents a novel therapeutic target for stroke.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Proteínas de Ciclo Celular/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Animales , Permeabilidad de la Membrana Celular , Endotelio Vascular/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasas Asociadas a rho/metabolismo
13.
J Neurosci ; 38(14): 3520-3533, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507145

RESUMEN

Chronic cerebral hypoperfusion is a characteristic seen in widespread CNS diseases, including neurodegenerative and mental disorders, and is commonly accompanied by cognitive impairment. Recently, several studies demonstrated that chronic cerebral hypoperfusion can induce the excessive inflammatory responses that precede neuronal dysfunction; however, the precise mechanism of cognitive impairment due to chronic cerebral hypoperfusion remains unknown. Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable channel that is abundantly expressed in immune cells and is involved in aggravation of inflammatory responses. Therefore, we investigated the pathophysiological role of TRPM2 in a mouse chronic cerebral hypoperfusion model with bilateral common carotid artery stenosis (BCAS). When male mice were subjected to BCAS, cognitive dysfunction and white matter injury at day 28 were significantly improved in TRPM2 knock-out (TRPM2-KO) mice compared with wild-type (WT) mice, whereas hippocampal damage was not observed. There were no differences in blood-brain barrier breakdown and H2O2 production between the two genotypes at 14 and 28 d after BCAS. Cytokine production was significantly suppressed in BCAS-operated TRPM2-KO mice compared with WT mice at day 28. In addition, the number of Iba1-positive cells gradually decreased from day 14. Moreover, daily treatment with minocycline significantly improved cognitive perturbation. Surgical techniques using bone marrow chimeric mice revealed that activated Iba1-positive cells in white matter could be brain-resident microglia, not peripheral macrophages. Together, these findings suggest that microglia contribute to the aggravation of cognitive impairment by chronic cerebral hypoperfusion, and that TRPM2 may be a potential target for chronic cerebral hypoperfusion-related disorders.SIGNIFICANCE STATEMENT Chronic cerebral hypoperfusion is manifested in a wide variety of CNS diseases, including neurodegenerative and mental disorders that are accompanied by cognitive impairment; however, the underlying mechanisms require clarification. Here, we used a chronic cerebral hypoperfusion mouse model to investigate whether TRPM2, a Ca2+-permeable cation channel highly expressed in immune cells, plays a destructive role in the development of chronic cerebral hypoperfusion-induced cognitive impairment, and propose a new hypothesis in which TRPM2-mediated activation of microglia, not macrophages, specifically contributes to the pathology through the aggravation of inflammatory responses. These findings shed light on the understanding of the mechanisms of chronic cerebral hypoperfusion-related inflammation, and are expected to provide a novel therapeutic molecule for cognitive impairment in CNS diseases.


Asunto(s)
Estenosis Carotídea/metabolismo , Disfunción Cognitiva/metabolismo , Microglía/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Estenosis Carotídea/complicaciones , Disfunción Cognitiva/etiología , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Canales Catiónicos TRPM/genética , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
14.
Glia ; 67(4): 718-728, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30793389

RESUMEN

During development or after brain injury, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes to supplement the number of oligodendrocytes. Although mechanisms of OPC differentiation have been extensively examined, the role of epigenetic regulators, such as histone deacetylases (HDACs) and DNA methyltransferase enzymes (DNMTs), in this process is still mostly unknown. Here, we report the differential roles of epigenetic regulators in OPC differentiation. We prepared primary OPC cultures from neonatal rat cortex. Our cultured OPCs expressed substantial amounts of mRNA for HDAC1, HDAC2, DNMT1, and DNMT3a. mRNA levels of HDAC1 and HDAC2 were both decreased by the time OPCs differentiated into myelin-basic-protein expressing oligodendrocytes. However, DNMT1 or DNMT3a mRNA level gradually decreased or increased during the differentiation step, respectively. We then knocked down those regulators in cultured OPCs with siRNA technique before starting OPC differentiation. While HDAC1 knockdown suppressed OPC differentiation, HDAC2 knockdown promoted OPC differentiation. DNMT1 knockdown also suppressed OPC differentiation, but unlike HDAC1/2, DNMT1-deficient cells showed cell damage during the later phase of OPC differentiation. On the other hand, when OPCs were transfected with siRNA for DNMT3a, the number of OPCs was decreased, indicating that DNMT3a may participate in OPC survival/proliferation. Taken together, these data demonstrate that each epigenetic regulator has different phase-specific roles in OPC survival and differentiation.


Asunto(s)
Epigénesis Genética/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular , Corteza Cerebral/citología , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , ADN Metiltransferasa 3A , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transfección
15.
Microvasc Res ; 122: 60-70, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472038

RESUMEN

Every organ demonstrates specific vascular characteristics and functions maintained by interactions of endothelial cells (ECs) and parenchymal cells. Particularly, brain ECs play a central role in the formation of a functional blood brain barrier (BBB). Organ-specific ECs have their own morphological features, and organ specificity must be considered when investigating interactions between ECs and other cell types constituting a target organ. Here we constructed angiogenesis-based microvascular networks with perivascular cells in a microfluidic device setting by coculturing ECs and mesenchymal stem cells (MSCs). Furthermore, we analyzed endothelial barrier functions as well as fundamental morphology, an essential step to build an in vitro BBB model. In particular, we used both brain microvascular ECs (BMECs) and human umbilical vein ECs (HUVECs) to test if organ specificity of ECs affects the formation processes and endothelial barrier functions of an engineered microvascular network. We found that microvascular formation processes differed by the source of ECs. HUVECs formed more extensive microvascular networks compared to BMECs while no differences were observed between BMECs and HUVECs in terms of both the microvascular diameter and the number of pericytes peripherally associated with the microvasculatures. To compare the endothelial barrier functions of each type of EC, we performed fluorescence dextran perfusion on constructed microvasculatures. The permeability coefficient of BMEC microvasculatures was significantly lower than that of HUVEC microvasculatures. In addition, there were significant differences in terms of tight junction protein expression. These results suggest that the organ source of ECs influences the properties of engineered microvasculature and thus is a factor to be considered in the design of organ-specific cell culture models.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Permeabilidad Capilar , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microvasos/metabolismo , Neovascularización Fisiológica , Pericitos/metabolismo , Barrera Hematoencefálica/citología , Comunicación Celular , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Humanos , Dispositivos Laboratorio en un Chip , Microvasos/citología , Fenotipo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
16.
Stem Cells ; 36(9): 1404-1410, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29781122

RESUMEN

Endothelial progenitor cells (EPCs) have been pursued as a potential cellular therapy for stroke and central nervous system injury. However, their underlying mechanisms remain to be fully defined. Recent experimental studies suggest that mitochondria may be released and transferred between cells. In this proof-of-concept study, we asked whether beneficial effects of EPCs may partly involve a mitochondrial phenomenon as well. First, EPC-derived conditioned medium was collected and divided into supernatant and particle fractions after centrifugation. Electron microscopy, Western blots, and flow cytometry showed that EPCs were able to release mitochondria. ATP and oxygen consumption assays suggested that these extracellular mitochondria may still be functionally viable. Confocal microscopy confirmed that EPC-derived extracellular mitochondria can be incorporated into normal brain endothelial cells. Adding EPC particles to brain endothelial cells promoted angiogenesis and decreased the permeability of brain endothelial cells. Next, we asked whether EPC-derived mitochondria may be protective. As expected, oxygen-glucose deprivation (OGD) increased brain endothelial permeability. Adding EPC-derived mitochondria particles to the damaged brain endothelium increased levels of mitochondrial protein TOM40, mitochondrial DNA copy number, and intracellular ATP. Along with these indirect markers of mitochondrial transfer, endothelial tightness was also restored after OGD. Taken together, these findings suggest that EPCs may support brain endothelial energetics, barrier integrity, and angiogenic function partly through extracellular mitochondrial transfer. Stem Cells 2018;36:1404-1410.


Asunto(s)
Encéfalo/metabolismo , Células Progenitoras Endoteliales/metabolismo , Endotelio/metabolismo , Mitocondrias/metabolismo , Humanos , Transducción de Señal
17.
Stem Cells ; 36(5): 751-760, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29314444

RESUMEN

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes in cerebral white matter. However, the underlying mechanisms that regulate this process remain to be fully defined, especially in adult brains. Recently, it has been suggested that signaling via A-kinase anchor protein 12 (AKAP12), a scaffolding protein that associates with intracellular molecules such as protein kinase A, may be involved in Schwann cell homeostasis and peripheral myelination. Here, we asked whether AKAP12 also regulates the mechanisms of myelination in the CNS. AKAP12 knockout mice were compared against wild-type (WT) mice in a series of neurochemical and behavioral assays. Compared with WTs, 2-months old AKAP12 knockout mice exhibited loss of myelin in white matter of the corpus callosum, along with perturbations in working memory as measured by a standard Y-maze test. Unexpectedly, very few OPCs expressed AKAP12 in the corpus callosum region. Instead, pericytes appeared to be one of the major AKAP12-expressing cells. In a cell culture model system, conditioned culture media from normal pericytes promoted in-vitro OPC maturation. However, conditioned media from AKAP12-deficient pericytes did not support the OPC function. These findings suggest that AKAP12 signaling in pericytes may be required for OPC-to-oligodendrocyte renewal to maintain the white matter homeostasis in adult brain. Stem Cells 2018;36:751-760.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Células-Madre Neurales/citología , Oligodendroglía/metabolismo , Sustancia Blanca/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Envejecimiento , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Medios de Cultivo Condicionados , Ratones Noqueados , Vaina de Mielina/metabolismo , Neurogénesis/fisiología , Oligodendroglía/citología , Sustancia Blanca/citología
18.
Stroke ; 49(4): 1003-1010, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29511131

RESUMEN

BACKGROUND AND PURPOSE: Endothelial progenitor cells (EPCs) have been extensively investigated as a therapeutic approach for repairing the vascular system in cerebrovascular diseases. Beyond vascular regeneration per se, EPCs may also release factors that affect the entire neurovascular unit. Here, we aim to study the effects of the EPC secretome on oligovascular remodeling in a mouse model of white matter injury after prolonged cerebral hypoperfusion. METHODS: The secretome of mouse EPCs was analyzed with a proteome array. In vitro, the effects of the EPC secretome and its factor angiogenin were assessed on primary oligodendrocyte precursor cells and mature human cerebral microvascular endothelial cells (hCMED/D3). In vivo, mice were subjected to permanent bilateral common carotid artery stenosis, then treated with EPC secretome at 24 hours and at 1 week, and cognitive outcome was evaluated with the Y maze test together with oligodendrocyte precursor cell proliferation/differentiation and vascular density in white matter at 4 weeks. RESULTS: Multiple growth factors, cytokines, and proteases were identified in the EPC secretome, including angiogenin. In vitro, the EPC secretome significantly enhanced endothelial and oligodendrocyte precursor cell proliferation and potentiated oligodendrocyte precursor cell maturation. Angiogenin was proved to be a key factor since pharmacological blockade of angiogenin signaling negated the positive effects of the EPC secretome. In vivo, treatment with the EPC secretome increased vascular density, myelin, and mature oligodendrocytes in white matter and rescued cognitive function in the mouse hypoperfusion model. CONCLUSIONS: Factors secreted by EPCs may ameliorate white matter damage in the brain by boosting oligovascular remodeling.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Estenosis Carotídea/metabolismo , Proliferación Celular/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Ribonucleasa Pancreática/farmacología , Remodelación Vascular/efectos de los fármacos , Sustancia Blanca/efectos de los fármacos , Animales , Isquemia Encefálica/metabolismo , Medios de Cultivo Condicionados , Citocinas/metabolismo , Modelos Animales de Enfermedad , Gutatión-S-Transferasa pi/metabolismo , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Proteína Básica de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Péptido Hidrolasas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ribonucleasa Pancreática/metabolismo , Sustancia Blanca/irrigación sanguínea
19.
Stroke ; 49(3): 630-637, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29371434

RESUMEN

BACKGROUND AND PURPOSE: Oxidative stress is an early response to cerebral ischemia and is likely to play an important role in the pathogenesis of cerebral ischemic injury. We sought to evaluate whether hyperacute plasma concentrations of biomarkers of oxidative stress, inflammation, and tissue damage predict infarct growth (IG). METHODS: We prospectively measured plasma F2-isoprostane (F2-isoP), urinary 8-oxo-7,8-dihydro-2'-deoxyguoanosine, plasma oxygen radical absorbance capacity assay, high sensitivity C reactive protein, and matrix metalloproteinase 2 and 9 in consecutive patients with acute ischemic stroke presenting within 9 hours of symptom onset. Patients with baseline diffusion-weighted magnetic resonance imaging and follow-up diffusion-weighted imaging or computed tomographic scan were included to evaluate the final infarct volume. Baseline diffusion-weighted imaging volume and final infarct volume were analyzed using semiautomated volumetric method. IG volume was defined as the difference between final infarct volume and baseline diffusion-weighted imaging volume. RESULTS: A total of 220 acute ischemic stroke subjects were included in the final analysis. One hundred seventy of these had IG. Baseline F2-isoP significantly correlated with IG volume (Spearman ρ=0.20; P=0.005) and final infarct volume (Spearman ρ=0.19; P=0.009). In a multivariate binary logistic regression model, baseline F2-isoP emerged as an independent predictor of the occurrence of IG (odds ratio, 2.57; 95% confidence interval, 1.37-4.83; P=0.007). In a multivariate linear regression model, baseline F2-isoP was independently associated with IG volume (B, 0.38; 95% confidence interval, 0.04-0.72; P=0.03). CONCLUSIONS: Elevated hyperacute plasma F2-isoP concentrations independently predict the occurrence of IG and IG volume in patients with acute ischemic stroke. If validated in future studies, measuring plasma F2-isoP might be helpful in the acute setting to stratify patients with acute ischemic stroke for relative severity of ischemic injury and expected progression.


Asunto(s)
Infarto Encefálico/sangre , Lesiones Encefálicas/sangre , Proteína C-Reactiva/metabolismo , F2-Isoprostanos/sangre , Estrés Oxidativo , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Infarto Encefálico/patología , Lesiones Encefálicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos
20.
J Neurochem ; 146(2): 160-172, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29570780

RESUMEN

Ischemic postconditioning is increasingly being investigated as a therapeutic approach for cerebral ischemia. However, the majority of studies are focused on the acute protection of neurons per se. Whether and how postconditioning affects multiple cells in the recovering neurovascular unit remains to be fully elucidated. Here, we asked whether postconditioning may modulate help-me signaling between injured neurons and reactive microglia. Rats were subjected to 100 min of focal cerebral ischemia, then randomized into a control versus postconditioning group. After 3 days of reperfusion, infarct volumes were significantly reduced in animals treated with postconditioning, along with better neurologic outcomes. Immunostaining revealed that ischemic postconditioning increased expression of vascular endothelial growth factor (VEGF) in neurons within peri-infarct regions. Correspondingly, we confirmed that VEGFR2 was expressed on Iba1-positive microglia/macrophages, and confocal microscopy showed that in postconditioned rats, these cells were polarized to a ramified morphology with higher expression of M2-like markers. Treating rats with a VEGF receptor 2 kinase inhibitor negated these effects of postconditioning on microglia/macrophage polarization. In vitro, postconditoning after oxygen-glucose deprivation up-regulated VEGF release in primary neuron cultures, and adding VEGF to microglial cultures partly shifted their M2-like markers. Altogether, our findings support the idea that after postconditioning, injured neurons may release VEGF as a 'help-me' signal that promotes microglia/macrophage polarization into potentially beneficial phenotypes.


Asunto(s)
Isquemia Encefálica/patología , Isquemia Encefálica/terapia , Polaridad Celular/fisiología , Poscondicionamiento Isquémico/métodos , Microglía/patología , Neuronas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Infarto Encefálico/etiología , Proteínas de Unión al Calcio/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/deficiencia , Infusiones Intraventriculares , Masculino , Proteínas de Microfilamentos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA