Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cerebellum ; 17(4): 392-403, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24906823

RESUMEN

Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. Zones are best revealed by gene expression, circuit anatomy, and cellular degeneration patterns. Thus far, the study of zones has been focused heavily on how neurons are organized. Because of this, detailed neuronal patterning maps have been established for Purkinje cells, granule cells, Golgi cells, unipolar brush cells, and also for the terminal field organization of climbing fiber and mossy fiber afferents. In comparison, however, it remains poorly understood if glial cells are also organized into zones. We have identified an Npy-Gfp BAC transgenic mouse line (Tau-Sapphire Green fluorescent protein (Gfp) is under the control of the neuropeptide Y (Npy) gene regulatory elements) that can be used to label Bergmann glial cells with Golgi-like resolution. In these adult transgenic mice, we found that Npy-Gfp expression was localized to Bergmann glia mainly in lobules VI/VII and IX/X. Using double immunofluorescence, we show that in these lobules, Npy-Gfp expression in the Bergmann glia overlaps with the pattern of the small heat shock protein HSP25, a Purkinje cell marker for zones located in lobules VI/VII and IX/X. Developmental analysis starting from the day of birth showed that HSP25 and Npy-Gfp expression follow a similar program of spatial and temporal patterning. However, loss of Npy signaling did not alter the patterning of Purkinje cell zones. We conclude that Bergmann glial cells are zonally organized and their patterns are restricted by boundaries that also confine cerebellar neurons into a topographic circuit map.


Asunto(s)
Cerebelo/citología , Cerebelo/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Animales , Cerebelo/crecimiento & desarrollo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo
2.
J Neurosci ; 36(30): 7911-24, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27466336

RESUMEN

UNLABELLED: Neurotransmitter release requires the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes by SNARE proteins syntaxin-1 (Stx1), synaptosomal-associated protein 25 (SNAP-25), and synaptobrevin-2 (Syb2). In mammalian systems, loss of SNAP-25 or Syb2 severely impairs neurotransmitter release; however, complete loss of function studies for Stx1 have been elusive due to the functional redundancy between Stx1 isoforms Stx1A and Stx1B and the embryonic lethality of Stx1A/1B double knock-out (DKO) mice. Here, we studied the roles of Stx1 in neuronal maintenance and neurotransmitter release in mice with constitutive or conditional deletion of Stx1B on an Stx1A-null background. Both constitutive and postnatal loss of Stx1 severely compromised neuronal viability in vivo and in vitro, indicating an obligatory role of Stx1 for maintenance of developing and mature neurons. Loss of Munc18-1, a high-affinity binding partner of Stx1, also showed severely impaired neuronal viability, but with a slower time course compared with Stx1A/1B DKO neurons, and exogenous Stx1A or Stx1B expression significantly delayed Munc18-1-dependent lethality. In addition, loss of Stx1 completely abolished fusion-competent vesicles and severely impaired vesicle docking, demonstrating its essential roles in neurotransmission. Putative partial SNARE complex assembly with the SNARE motif mutant Stx1A(AV) (A240V, V244A) was not sufficient to rescue neurotransmission despite full recovery of vesicle docking and neuronal survival. Together, these data suggest that Stx1 has independent functions in neuronal maintenance and neurotransmitter release and complete SNARE complex formation is required for vesicle fusion and priming, whereas partial SNARE complex formation is sufficient for vesicle docking and neuronal maintenance. SIGNIFICANCE STATEMENT: Syntaxin-1 (Stx1) is a component of the synaptic vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and is essential for neurotransmission. We present the first detailed loss-of-function characterization of the two Stx1 isoforms in central mammalian neurons. We show that Stx1 is fundamental for maintenance of developing and mature neurons and also for vesicle docking and neurotransmission. We also demonstrate that neuronal maintenance and neurotransmitter release are regulated by Stx1 through independent functions. Furthermore, we show that SNARE complex formation is required for vesicle fusion, whereas partial SNARE complex formation is sufficient for vesicle docking and neuronal maintenance. Therefore, our work provides insights into differential functions of Stx1 in neuronal maintenance and neurotransmission, with the latter explored further into its functions in vesicle docking and fusion.


Asunto(s)
Fusión de Membrana/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Sintaxina 1/metabolismo , Animales , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Hipocampo/citología , Hipocampo/fisiología , Masculino , Ratones , Neurogénesis/fisiología , Neuronas/citología , Terminales Presinápticos/ultraestructura , Vesículas Sinápticas/ultraestructura
3.
Neurobiol Dis ; 86: 86-98, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26586559

RESUMEN

Neurological diseases are especially devastating when they involve neurodegeneration. Neuronal destruction is widespread in cognitive disorders such as Alzheimer's and regionally localized in motor disorders such as Parkinson's, Huntington's, and ataxia. But, surprisingly, the onset and progression of these diseases can occur without neurodegeneration. To understand the origins of diseases that do not have an obvious neuropathology, we tested how loss of CAR8, a regulator of IP3R1-mediated Ca(2+)-signaling, influences cerebellar circuit formation and neural function as movement deteriorates. We found that faulty molecular patterning, which shapes functional circuits called zones, leads to alterations in cerebellar wiring and Purkinje cell activity, but not to degeneration. Rescuing Purkinje cell function improved movement and reducing their Ca(2+) influx eliminated ectopic zones. Our findings in Car8(wdl) mutant mice unveil a pathophysiological mechanism that may operate broadly to impact motor and non-motor conditions that do not involve degeneration.


Asunto(s)
Ataxia/patología , Ataxia/fisiopatología , Biomarcadores de Tumor/genética , Proteínas del Tejido Nervioso/genética , Temblor/patología , Temblor/fisiopatología , Animales , Ataxia/genética , Ataxia/psicología , Biomarcadores de Tumor/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/patología , Cerebelo/fisiología , Clorzoxazona/administración & dosificación , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patología , Células de Purkinje/fisiología , Médula Espinal/metabolismo , Médula Espinal/patología , Temblor/genética , Temblor/psicología , Tirosina 3-Monooxigenasa/metabolismo
4.
Cerebellum ; 15(6): 789-828, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26439486

RESUMEN

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.


Asunto(s)
Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Animales , Cerebelo/citología , Cerebelo/fisiopatología , Consenso , Humanos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
5.
J Neurosci ; 34(24): 8231-45, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920627

RESUMEN

Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. The proper connectivity of zones is critical for motor coordination and motor learning, and in several neurological diseases cerebellar circuits degenerate in zonal patterns. Despite recent advances in understanding zone function, we still have a limited understanding of how zones are formed. Here, we focused our attention on Purkinje cells to gain a better understanding of their specific role in establishing zonal circuits. We used conditional mouse genetics to test the hypothesis that Purkinje cell neurotransmission is essential for refining prefunctional developmental zones into sharp functional zones. Our results show that inhibitory synaptic transmission in Purkinje cells is necessary for the precise patterning of Purkinje cell zones and the topographic targeting of mossy fiber afferents. As expected, blocking Purkinje cell neurotransmission caused ataxia. Using in vivo electrophysiology, we demonstrate that loss of Purkinje cell communication altered the firing rate and pattern of their target cerebellar nuclear neurons. Analysis of Purkinje cell complex spike firing revealed that feedback in the cerebellar nuclei to inferior olive to Purkinje cell loop is obstructed. Loss of Purkinje neurotransmission also caused ectopic zonal expression of tyrosine hydroxylase, which is only expressed in adult Purkinje cells when calcium is dysregulated and if excitability is altered. Our results suggest that Purkinje cell inhibitory neurotransmission establishes the functional circuitry of the cerebellum by patterning the molecular zones, fine-tuning afferent circuitry, and shaping neuronal activity.


Asunto(s)
Cerebelo , Inhibición Neural/fisiología , Células de Purkinje/fisiología , Transmisión Sináptica/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Peso Corporal/genética , Cerebelo/citología , Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Transgénicos , Trastornos del Movimiento/genética , Trastornos del Movimiento/fisiopatología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/genética , Tamaño de los Órganos/genética , Transmisión Sináptica/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
6.
J Neurophysiol ; 113(2): 578-91, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25355961

RESUMEN

Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Cerebelo/fisiología , Células de Purkinje/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Anestésicos/farmacología , Animales , Animales Recién Nacidos , Cerebelo/efectos de los fármacos , Inmunohistoquímica , Ratones , Microelectrodos , Células de Purkinje/efectos de los fármacos , Factores de Tiempo , Vigilia/fisiología
7.
J Neurophysiol ; 114(4): 2404-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26203110

RESUMEN

STX1 is a major neuronal syntaxin protein located at the plasma membrane of the neuronal tissues. Rodent STX1 has two highly similar paralogs, STX1A and STX1B, that are thought to be functionally redundant. Interestingly, some studies have shown that the distribution patterns of STX1A and STX1B at the central and peripheral nervous systems only partially overlapped, implying that there might be differential functions between these paralogs. In the current study, we generated an STX1B knockout (KO) mouse line and studied the impact of STX1B removal in neurons of several brain regions and the neuromuscular junction (NMJ). We found that either complete removal of STX1B or selective removal of it from forebrain excitatory neurons in mice caused premature death. Autaptic hippocampal and striatal cultures derived from STX1B KO mice still maintained efficient neurotransmission compared with neurons from STX1B wild-type and heterozygous mice. Interestingly, examining high-density cerebellar cultures revealed a decrease in the spontaneous GABAergic transmission frequency, which was most likely due to a lower number of neurons in the STX1B KO cultures, suggesting that STX1B is essential for neuronal survival in vitro. Moreover, our study also demonstrated that although STX1B is dispensable for the formation of the mouse NMJ, it is required to maintain the efficiency of neurotransmission at the nerve-muscle synapse.


Asunto(s)
Encéfalo/fisiopatología , Unión Neuromuscular/fisiología , Neuronas/fisiología , Sintaxina 1/metabolismo , Animales , Western Blotting , Encéfalo/patología , Supervivencia Celular/fisiología , Células Cultivadas , Muerte , Potenciales Postsinápticos Excitadores/fisiología , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Potenciales Postsinápticos Miniatura/fisiología , Proteínas Munc18/metabolismo , Neuronas/patología , Técnicas de Placa-Clamp , Sintaxina 1/genética , Ácido gamma-Aminobutírico/metabolismo
8.
J Neurosci ; 33(42): 16698-714, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133272

RESUMEN

Synaptic vesicles undergo sequential steps in preparation for neurotransmitter release. Individual SNARE proteins and the SNARE complex itself have been implicated in these processes. However, discrete effects of SNARE proteins on synaptic function have been difficult to assess using complete loss-of-function approaches. We therefore used a genetic titration technique in cultured mouse hippocampal neurons to evaluate the contribution of the neuronal SNARE protein Syntaxin1 (Stx1) in vesicle docking, priming, and release probability. We generated graded reductions of total Stx1 levels by combining two approaches, namely, endogenous hypomorphic expression of the isoform Stx1B and RNAi-mediated knockdown. Proximity of synaptic vesicles to the active zone was not strongly affected. However, overall release efficiency of affected neurons was severely impaired, as demonstrated by a smaller readily releasable pool size, slower refilling rate of primed vesicles, and lower release probability. Interestingly, dose-response fitting of Stx1 levels against readily releasable pool size and vesicular release probability showed similar Kd (dissociation constant) values at 18% and 19% of wild-type Stx1, with cooperativity estimates of 3.4 and 2.5, respectively. This strongly suggests that priming and vesicle fusion share the same molecular stoichiometry, and are governed by highly related mechanisms.


Asunto(s)
Exocitosis/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Animales , Línea Celular , Hipocampo/citología , Hipocampo/metabolismo , Fusión de Membrana/fisiología , Ratones , Neuronas/citología , Neuronas/metabolismo , Vesículas Sinápticas/genética , Sintaxina 1/genética
9.
Elife ; 92020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32990595

RESUMEN

Ramón y Cajal proclaimed the neuron doctrine based on circuit features he exemplified using cerebellar basket cell projections. Basket cells form dense inhibitory plexuses that wrap Purkinje cell somata and terminate as pinceaux at the initial segment of axons. Here, we demonstrate that HCN1, Kv1.1, PSD95 and GAD67 unexpectedly mark patterns of basket cell pinceaux that map onto Purkinje cell functional zones. Using cell-specific genetic tracing with an Ascl1CreERT2 mouse conditional allele, we reveal that basket cell zones comprise different sizes of pinceaux. We tested whether Purkinje cells instruct the assembly of inhibitory projections into zones, as they do for excitatory afferents. Genetically silencing Purkinje cell neurotransmission blocks the formation of sharp Purkinje cell zones and disrupts excitatory axon patterning. The distribution of pinceaux into size-specific zones is eliminated without Purkinje cell GABAergic output. Our data uncover the cellular and molecular diversity of a foundational synapse that revolutionized neuroscience.


Asunto(s)
Células de Purkinje/fisiología , Transmisión Sináptica/fisiología , Animales , Femenino , Masculino , Ratones
10.
Dis Model Mech ; 13(2)2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31704708

RESUMEN

Duchenne muscular dystrophy (DMD) is a debilitating and ultimately lethal disease involving progressive muscle degeneration and neurological dysfunction. DMD is caused by mutations in the dystrophin gene, which result in extremely low or total loss of dystrophin protein expression. In the brain, dystrophin is heavily localized to cerebellar Purkinje cells, which control motor and non-motor functions. In vitro experiments in mouse Purkinje cells revealed that loss of dystrophin leads to low firing rates and high spiking variability. However, it is still unclear how the loss of dystrophin affects cerebellar function in the intact brain. Here, we used in vivo electrophysiology to record Purkinje cells and cerebellar nuclear neurons in awake and anesthetized female mdx (also known as Dmd) mice. Purkinje cell simple spike firing rate is significantly lower in mdx mice compared to controls. Although simple spike firing regularity is not affected, complex spike regularity is increased in mdx mutants. Mean firing rate in cerebellar nuclear neurons is not altered in mdx mice, but their local firing pattern is irregular. Based on the relatively well-preserved cytoarchitecture in the mdx cerebellum, our data suggest that faulty signals across the circuit between Purkinje cells and cerebellar nuclei drive the abnormal firing activity. The in vivo requirements of dystrophin during cerebellar circuit communication could help explain the motor and cognitive anomalies seen in individuals with DMD.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cerebelo/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Red Nerviosa/fisiopatología , Potenciales de Acción , Animales , Conducta Animal , Cerebelo/patología , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Red Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Células de Purkinje/metabolismo , Células de Purkinje/patología , Vigilia
11.
Sci Rep ; 9(1): 1742, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30742002

RESUMEN

Purkinje cells receive synaptic input from several classes of interneurons. Here, we address the roles of inhibitory molecular layer interneurons in establishing Purkinje cell function in vivo. Using conditional genetics approaches in mice, we compare how the lack of stellate cell versus basket cell GABAergic neurotransmission sculpts the firing properties of Purkinje cells. We take advantage of an inducible Ascl1CreER allele to spatially and temporally target the deletion of the vesicular GABA transporter, Vgat, in developing neurons. Selective depletion of basket cell GABAergic neurotransmission increases the frequency of Purkinje cell simple spike firing and decreases the frequency of complex spike firing in adult behaving mice. In contrast, lack of stellate cell communication increases the regularity of Purkinje cell simple spike firing while increasing the frequency of complex spike firing. Our data uncover complementary roles for molecular layer interneurons in shaping the rate and pattern of Purkinje cell activity in vivo.


Asunto(s)
Potenciales de Acción , Interneuronas/fisiología , Células de Purkinje/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores , Inmunohistoquímica , Interneuronas/citología , Ratones , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Células de Purkinje/citología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
12.
J Neurosci Methods ; 262: 21-31, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26777474

RESUMEN

BACKGROUND: Electrophysiological recording approaches are essential for understanding brain function. Among these approaches are various methods of performing single-unit recordings. However, a major hurdle to overcome when recording single units in vivo is stability. Poor stability results in a low signal-to-noise ratio, which makes it challenging to isolate neuronal signals. Proper isolation is needed for differentiating a signal from neighboring cells or the noise inherent to electrophysiology. Insufficient isolation makes it impossible to analyze full action potential waveforms. A common source of instability is an inadequate surgery. Problems during surgery cause blood loss, tissue damage and poor healing of the surrounding tissue, limited access to the target brain region, and, importantly, unreliable fixation points for holding the mouse's head. NEW METHOD: We describe an optimized surgical procedure that ensures limited tissue damage and delineate a method for implanting head plates to hold the animal firmly in place. RESULTS: Using the cerebellum as a model, we implement an extracellular recording technique to acquire single units from Purkinje cells and cerebellar nuclear neurons in behaving mice. We validate the stability of our method by holding single units after injecting the powerful tremorgenic drug harmaline. We performed multiple structural analyses after recording. COMPARISON WITH EXISTING METHODS: Our approach is ideal for studying neuronal function in active mice and valuable for recording single-neuron activity when considerable motion is unavoidable. CONCLUSIONS: The surgical principles we present for accessing the cerebellum can be easily adapted to examine the function of neurons in other brain regions.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/citología , Neuronas/fisiología , Vigilia/fisiología , Animales , Animales Recién Nacidos , Biomarcadores de Tumor/metabolismo , Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Estimulación Eléctrica , Electrodos Implantados , Electrofisiología/instrumentación , Electrofisiología/métodos , Embrión de Mamíferos , Proteínas de Choque Térmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de GABA-A/metabolismo , Relación Señal-Ruido
13.
Neuron ; 84(2): 416-31, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25374362

RESUMEN

Synaptic vesicle docking, priming, and fusion at active zones are orchestrated by a complex molecular machinery. We employed hippocampal organotypic slice cultures from mice lacking key presynaptic proteins, cryofixation, and three-dimensional electron tomography to study the mechanism of synaptic vesicle docking in the same experimental setting, with high precision, and in a near-native state. We dissected previously indistinguishable, sequential steps in synaptic vesicle active zone recruitment (tethering) and membrane attachment (docking) and found that vesicle docking requires Munc13/CAPS family priming proteins and all three neuronal SNAREs, but not Synaptotagmin-1 or Complexins. Our data indicate that membrane-attached vesicles comprise the readily releasable pool of fusion-competent vesicles and that synaptic vesicle docking, priming, and trans-SNARE complex assembly are the respective morphological, functional, and molecular manifestations of the same process, which operates downstream of vesicle tethering by active zone components.


Asunto(s)
Proteínas SNARE/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Hipocampo/metabolismo , Fusión de Membrana/fisiología , Ratones , Neuronas/metabolismo , Neuronas/ultraestructura , Sinapsis/ultraestructura
14.
Science ; 321(5895): 1507-10, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18703708

RESUMEN

During synaptic vesicle fusion, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) protein syntaxin-1 exhibits two conformations that both bind to Munc18-1: a "closed" conformation outside the SNARE complex and an "open" conformation in the SNARE complex. Although SNARE complexes containing open syntaxin-1 and Munc18-1 are essential for exocytosis, the function of closed syntaxin-1 is unknown. We generated knockin/knockout mice that expressed only open syntaxin-1B. Syntaxin-1B(Open) mice were viable but succumbed to generalized seizures at 2 to 3 months of age. Binding of Munc18-1 to syntaxin-1 was impaired in syntaxin-1B(Open) synapses, and the size of the readily releasable vesicle pool was decreased; however, the rate of synaptic vesicle fusion was dramatically enhanced. Thus, the closed conformation of syntaxin-1 gates the initiation of the synaptic vesicle fusion reaction, which is then mediated by SNARE-complex/Munc18-1 assemblies.


Asunto(s)
Vesículas Sinápticas/fisiología , Sintaxina 1/química , Sintaxina 1/metabolismo , Animales , Calcio/metabolismo , Epilepsia/etiología , Potenciales Postsinápticos Excitadores , Fusión de Membrana , Ratones , Ratones Noqueados , Proteínas Munc18/metabolismo , Mutación , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas SNARE/metabolismo , Sacarosa/metabolismo , Sinapsis/fisiología , Vesículas Sinápticas/ultraestructura , Sintaxina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA