Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38595080

RESUMEN

OBJECTIVES: This study assessed whether patient-specific contrast enhancement optimizer simulation software (p-COP) can reduce the contrast material (CM) dose compared with the conventional body weight (BW)-tailored scan protocol during transcatheter aortic valve implantation-computed tomography angiography (TAVI-CTA) in patients with aortic stenosis. METHODS: We used the CM injection protocol selected by the p-COP in group A (n = 30). p-COP uses an algorithm that concerns data on an individual patient's cardiac output. Group B (n = 30) was assigned to the conventional BW-tailored CM injection protocol group. We compared the CM dose, CM amount, injection rate, and computed tomography (CT) values in the abdominal aorta between the 2 groups and classified them as acceptable (>280 Hounsfield units (HU)) or unacceptable (<279 HU) based on the optimal CT value and visualization scores for TAVI-CTA. We used the Mann-Whitney U test to compare patient characteristics and assess the interpatient variability of subjects in both groups. RESULTS: Group A received 56.2 mL CM and 2.6 mL/s of injection, whereas group B received 76.9 mL CM and 3.4 mL/s of injection (P < 0.01). The CT value for the abdominal aorta at the celiac level was 287.0 HU in group A and 301.7HU in group B (P = 0.46). The acceptable (>280 HU) and unacceptable (<280 HU) CT value rates were 22 and 8 patients in group A and 24 and 6 patients in group B, respectively (P = 0.76). We observed no significant differences in the visualization scores between groups A and B (visualization score = 3, P = 0.71). CONCLUSION: The utilization of p-COP may decrease the CM dosage and injection rate by approximately 30% in individuals with aortic stenosis compared with the body-weight-tailored scan protocol during TAVI-CTA.

2.
Heart Vessels ; 37(8): 1446-1452, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35028684

RESUMEN

To evaluate whether the patient-specific contrast enhancement optimizer simulation software (p-COP) is useful for predicting contrast enhancement during whole-body computed tomography angiography (WBCTA). We randomly divided the patients into two groups using a random number table. We used the contrast material (CM) injection protocol selected by p-COP in group A (n = 52). The p-COP used an algorithm including data on the individual patient's cardiac output. Group B (n = 50) was assigned to the conventional CM injection protocol based on body weight. We compared the CT number in the abdominal aorta at the celiac artery level between the two groups and classified them as acceptable (> 280 HU) and unacceptable (< 279 HU) based on the optimal CT number for the WBCTA scans. To evaluate the difference in both injection protocols, we compared the visual inspection of the images of the artery of Adamkiewicz in both protocols. The CM dosage and injection rate in group A were significantly lower than those in group B (480.8 vs. 501.1 mg I/kg and 3.1 vs. 3.3 ml/s, p < 0.05). The CT number of the abdominal aorta at the celiac level was 382.4 ± 62.3 HU in group A and 363.8 ± 71.3 HU in group B (p = 0.23). CM dosage and injection rate were positively correlated to cardiac output for group A (r = 0.80, p < 0.05) and group B (r = 0.16, p < 0.05). The number of patients with an acceptable CT number was higher in group A [46/6 (86.7%)] than in group B [43/7 (71.4%)], but not significant (p = 0.71). The visualization rate for the Adamkiewicz artery was not significantly different between groups A and B (p = 0.89). The p-COP was useful for predicting contrast enhancement during WBCTA with a lower CM dosage and a lower contrast injection rate than that based on the body weight protocol. In patients with lower cardiac output a reduction in contrast injection rate and CM dosage did not lead to a reduced imaging quality, thus particularly in this group CM dosage can be reduced by p-COP.


Asunto(s)
Angiografía por Tomografía Computarizada , Medios de Contraste , Peso Corporal , Angiografía por Tomografía Computarizada/métodos , Humanos , Programas Informáticos , Tomografía Computarizada por Rayos X/métodos
3.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 72(5): 424-9, 2016 May.
Artículo en Japonés | MEDLINE | ID: mdl-27211088

RESUMEN

Recently, radiation damage to the detector apparatus employed in computed radiography (CR) mammography has become problematic. The CR system and the imaging plate (IP) applied to quality control (QC) program were also used in clinical mammography in our hospital, and the IP to which radiation damage has occurred was used for approximately 5 years (approximately 13,000 exposures). We considered using previously acquired QC image data, which is stored in a server, to investigate the influence of radiation damage to an IP. The mammography unit employed in this study was a phase contrast mammography (PCM) Mermaid (KONICA MINOLTA) system. The QC image was made newly, and it was output in the film, and thereafter the optical density of the step-phantom image was measured. An input (digital value)-output (optical density) conversion curve was plotted using the obtained data. The digital values were then converted to optical density values using a reference optical density vs. digital value curve. When a high radiation dose was applied directly, radiation damage occurred at a position on the IP where no object was present. Daily QC for mammography is conducted using an American College of Radiology (ACR) accreditation phantom and acrylic disc, and an environmental background density measurement is performed as one of the management indexes. In this study, the radiation damage sustained by the acrylic disc was shown to differ from that of the background. Thus, it was revealed that QC results are influenced by radiation damage.


Asunto(s)
Mamografía/métodos , Efectos de la Radiación , Tomografía Computarizada por Rayos X/métodos , Mamografía/instrumentación , Control de Calidad , Dosis de Radiación , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/instrumentación
4.
Phys Eng Sci Med ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696098

RESUMEN

To predict endoleaks after thoracic endovascular aneurysm repair (TEVAR) we submitted patient characteristics and vessel features observed on pre- operative computed tomography angiography (CTA) to machine-learning. We evaluated 1-year follow-up CT scans (arterial and delayed phases) in patients who underwent TEVAR for the presence or absence of an endoleak. We evaluated the effect of machine learning of the patient age, sex, weight, and height, plus 22 vascular features on the ability to predict post-TEVAR endoleaks. The extreme Gradient Boosting (XGBoost) for ML system was trained on 14 patients with- and 131 without endoleaks. We calculated their importance by applying XGBoost to machine learning and compared our findings between with those of conventional vessel measurement-based methods such as the 22 vascular features by using the Pearson correlation coefficients. Pearson correlation coefficient and 95% confidence interval (CI) were r = 0.86 and 0.75 to 0.92 for the machine learning, r = - 0.44 and - 0.56 to - 0.29 for the vascular angle, and r = - 0.19 and - 0.34 to - 0.02 for the diameter between the subclavian artery and the aneurysm (Fig. 3a-c, all: p < 0.05). With machine-learning, the univariate analysis was significant higher compared with the vascular angle and in the diameter between the subclavian artery and the aneurysm such as the conventional methods (p < 0.05). To predict the risk for post-TEVAR endoleaks, machine learning was superior to the conventional vessel measurement method when factors such as patient characteristics, and vascular features (vessel length, diameter, and angle) were evaluated on pre-TEVAR thoracic CTA images.

5.
Radiat Prot Dosimetry ; 199(6): 527-532, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-36881907

RESUMEN

To compare the radiation dose and diagnostic ability of the 100-kVp protocol, based on the contrast noise ratio (CNR) index, during coronary artery bypass graft (CABG) vessels with those of the 120-kVp protocol. For the 120-kVp scans (150 patients), the targeted image level was set at 25 Hounsfield units (HU) (CNR120 = iodine contrast/25 HU). For the 100-kVp scans (150 patients), the targeted noise level was set at 30 HU to obtain the same CNR as in the 120-kVp scans (i.e. using 1.2-fold higher iodine contrast, CNR100 = 1.2 × iodine contrast/(1.2 × 25 HU) = CNR120). We compared the CNRs, radiation doses, detection of CABG vessels and visualisation scores of the scans acquired at 120 and 100 kVp, respectively. At the same CNR, the 100-kVp protocol may help reduce the radiation dose by ⁓30% compared with the 120-kVp protocol, without degradation of diagnostic ability during CABG.


Asunto(s)
Angiografía por Tomografía Computarizada , Reducción Gradual de Medicamentos , Humanos , Angiografía por Tomografía Computarizada/métodos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Puente de Arteria Coronaria , Medios de Contraste , Interpretación de Imagen Radiográfica Asistida por Computador , Angiografía Coronaria/métodos
6.
Radiat Prot Dosimetry ; 199(12): 1295-1300, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37337642

RESUMEN

We investigated the effect of electrocardiographic (ECG) mA-modulation of ECG-gated scans of computed tomography (CTA) on radiation dose and image noise at high heart rates (HR) above 100 bpm between helical pitches (HP) 0.16 and 0.24. ECG mA-modulation range during ECG-gated CTA is 50-100 mA, the phase setting is 40-60% and the scan range is 90 mm for clinical data during HR for 90, 120 and 150 bpm. Radiation dose and image noise in Housfield units are measured for CT equipment during HR for 90, 120 and 150 bpm between HP 0.16 and 0.24. ECG mA-modulation, dose reduction ratio for HR 90, 120 and 150 bpm are 19.1, 13.4 and 8.7% at HP 0.16 and 17.1, 13.3 and 7.7% at HP 0.24, respectively. No significant differences were observed in image noise between both HP. Dose reductions of 8-24% are achieved with ECG mA-modulation during ECG-gated CCTA scan, which is beneficial even in high HR more than 100 bpm.


Asunto(s)
Pediatría , Tomografía Computarizada Espiral , Humanos , Niño , Angiografía Coronaria/métodos , Tomografía Computarizada Espiral/métodos , Frecuencia Cardíaca , Dosis de Radiación , Electrocardiografía , Tomografía Computarizada por Rayos X
7.
Medicine (Baltimore) ; 102(12): e33328, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961162

RESUMEN

To evaluate the effects of various patient characteristics on vessel enhancement on arterio-venous fistula (AVF) computed tomography (CT) angiography (AVF-CT angiography). A total of 127 patients with suspected or confirmed shunt stenosis and internal AVF complications were considered for inclusion in a retrospective cohort study. The tube voltage was 120 kVp, and the tube current was changed from 300 to 770 mA to maintain the image quality (noise index: 14) using automatic tube current modulation. To evaluate the effects of age, sex, body size, and scan delay on the CT number of the brachial artery or vein, we used correlation coefficients and multivariate regression analyses. There was a significant positive correlation between the CT number of the brachial artery or vein and age (R = 0.21 or 0.23, P < .01). The correlations were inverse with the height (r = -0.45 or -0.42), total body weight (r = -0.52 or -0.50), body mass index (r = -0.21 or -0.23), body surface area (body surface area [BSA]; r = -0.56 or -0.54), and lean body weight (r = -0.55 or -0.53) in linear regression analysis (P < .01 for all). There was a significant correlation between the CT number of the brachial artery or vein and scan delay (R = 0.19 or 01.9, P < .01). Only the BSA had significant effects on the CT number in multivariate regression analysis (P < .01). The BSA was significantly correlated with the CT number of the brachial artery or vein on AVF-CT angiography.


Asunto(s)
Angiografía por Tomografía Computarizada , Fístula , Humanos , Angiografía por Tomografía Computarizada/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Angiografía/métodos , Peso Corporal , Medios de Contraste , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA