Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Exp Med ; 198(9): 1349-60, 2003 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-14581606

RESUMEN

DNA rearrangement permits bacteria to regulate gene content and expression. In Helicobacter pylori, cagY, which contains an extraordinary number of direct DNA repeats, encodes a surface-exposed subunit of a (type IV) bacterial secretory system. Examining potential DNA rearrangements involving the cagY repeats indicated that recombination events invariably yield in-frame open reading frames, producing alternatively expressed genes. In individual hosts, H. pylori cell populations include strains that produce CagY proteins that differ in size, due to the predicted in-frame deletions or duplications, and elicit minimal or no host antibody recognition. Using repetitive DNA, H. pylori rearrangements in a host-exposed subunit of a conserved bacterial secretion system may permit a novel form of antigenic evasion.


Asunto(s)
ADN Bacteriano/genética , Helicobacter pylori/genética , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas Bacterianas/genética , Secuencia de Bases , Cartilla de ADN
2.
Nucleic Acids Res ; 30(24): 5391-7, 2002 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12490707

RESUMEN

Helicobacter pylori, bacteria that colonize the human gastric mucosa, possess a large number of genes for restriction-modification (R-M) systems, and essentially, every strain possesses a unique complement of functional and partial R-M systems. Nearly half of the H.pylori strains studied possess an active type IIs R-M system, HpyII, with the recognition sequence GAAGA. Recombination between direct repeats that flank the R-M cassette allows for its deletion whereas strains lacking hpyIIRM can acquire this cassette through natural transformation. We asked whether strains lacking HpyII R-M activity can acquire an active hpyIIRM cassette [containing a 1.4 kb kanamycin resistance (aphA) marker], whether such acquisition is DNase sensitive or resistant and whether restriction barriers limit acquisition of chromosomal DNA. Our results indicate that natural transformation and conjugation-like mechanisms may contribute to the transfer of large (4.8 kb) insertions of chromosomal DNA between H.pylori strains, that inactive or partial R-M systems can be reactivated upon recombination with a functional allele, consistent with their being contingency genes, and that H.pylori R-M diversity limits acquisition of chromosomal DNA fragments of >/=1 kb.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/genética , ADN Bacteriano/genética , Genoma Bacteriano , Helicobacter pylori/genética , Metilación de ADN , Enzimas de Restricción-Modificación del ADN/metabolismo , ADN Bacteriano/metabolismo , Desoxirribonucleasa I/metabolismo , Variación Genética , Helicobacter pylori/enzimología , Mutación Puntual , Especificidad de la Especie , Transformación Bacteriana
3.
Cancer Res ; 62(8): 2385-9, 2002 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-11956101

RESUMEN

The sensitivity of Helicobacter pylori chromosomal DNA to MboI digestion was investigated in 208 strains from several continents. Only 11 (5%) of strains were sensitive to MboI, and it was hypothesized that HpyIII, a type II restriction/modification enzyme with sequence homology to MboI, mediated the protection. This was confirmed by PCR analysis of the gene locus of hpyIII, normally composed of hpyIIIR and hpyIIIM. In all but one strain sensitive to MboI, no PCR product of hpyIIIR was obtained. In contrast, all strains yielded a product for hpyIIIM, independent of MboI phenotype. Further examination of the hpyIII locus in strains lacking a hpyIIIR PCR product identified a novel gene, hrgA, upstream of hpyIIIM. All 208 strains examined had either hpyIIIR or hrgA, but not both, upstream of hpyIIIM. Although hrgA has homology with a Campylobacter jejuni gene (Cj1602), its function is not known. In Western countries, hrgA was more prevalent (53%) than in Asia (25%; P < 0.0001, chi(2)). In Asia, hrgA was more prevalent among gastric cancer patients (18 of 43; 42%) than among noncancer patients (16 of 95; 17%; P = 0.001, chi(2)). All 143 Asian strains tested were cagA(+), but among Western strains, hrgA was more prevalent in cagA(+) strains (26 of 42; 62%) than in cagA(-) strains (9 of 23; 39%; P = 0.04, chi(2)). In coculture with epithelial cells, hpyIIIR and hrgA strains did not show any significant differences in interleukin-8 induction and apoptosis. Although a direct function for hrgA in virulence could not be demonstrated, our data indicate that hrgA is a strain-specific gene that might be associated with gastric cancer among H. pylori isolates from Asian patients.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Neoplasias Gástricas/microbiología , Adulto , Anciano , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Femenino , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/patogenicidad , Humanos , Interleucina-8/biosíntesis , Interleucina-8/metabolismo , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Virulencia
4.
J Bacteriol ; 186(22): 7704-13, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15516585

RESUMEN

Recombination is a fundamental mechanism for the generation of genetic variation. Helicobacter pylori strains have different frequencies of intragenomic recombination, arising from deletions and duplications between DNA repeat sequences, as well as intergenomic recombination, facilitated by their natural competence. We identified a gene, hp1523, that influences recombination frequencies in this highly diverse bacterium and demonstrate its importance in maintaining genomic integrity by limiting recombination events. HP1523 shows homology to RecG, an ATP-dependent helicase that in Escherichia coli allows repair of damaged replication forks to proceed without recourse to potentially mutagenic recombination. Cross-species studies done show that hp1523 can complement E. coli recG mutants in trans to the same extent as E. coli recG can, indicating that hp1523 has recG function. The E. coli recG gene only partially complements the hp1523 mutation in H. pylori. Unlike other recG homologs, hp1523 is not involved in DNA repair in H. pylori, although it has the ability to repair DNA when expressed in E. coli. Therefore, host context appears critical in defining the function of recG. The fact that in E. coli recG phenotypes are not constant in other species indicates the diverse roles for conserved recombination genes in prokaryotic evolution.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Helicobacter pylori/enzimología , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Daño del ADN , ADN Helicasas/genética , Reparación del ADN , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Prueba de Complementación Genética , Genoma Bacteriano , Helicobacter pylori/genética , Datos de Secuencia Molecular , Fenotipo , Recombinación Genética , Especificidad de la Especie
5.
Proc Natl Acad Sci U S A ; 100(23): 13579-84, 2003 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-14593200

RESUMEN

Prokaryotic genomes are substantially diverse, even when from closely related species, with the resulting phenotypic diversity representing a repertoire of adaptations to specific constraints. Within the microbial population, genome content may not be fixed, as changing selective forces favor particular phenotypes; however, organisms well adapted to particular niches may have evolved mechanisms to facilitate such plasticity. The highly diverse Helicobacter pylori is a model for studying genome plasticity in the colonization of individual hosts. For H. pylori, neither point mutation, nor intergenic recombination requiring the presence of multiple colonizing strains, is sufficient to fully explain the observed diversity. Here we demonstrate that H. pylori has extensive, nonrandomly distributed repetitive chromosomal sequences, and that recombination between identical repeats contributes to the variation within individual hosts. That H. pylori is representative of prokaryotes, especially those with smaller (<2 megabases) genomes, that have similarly extensive direct repeats, suggests that recombination between such direct DNA repeats is a widely conserved mechanism to promote genome diversification.


Asunto(s)
ADN/metabolismo , Genoma Bacteriano , Helicobacter pylori/genética , Secuencia de Bases , Biología Computacional , Bases de Datos Genéticas , Eliminación de Gen , Variación Genética , Datos de Secuencia Molecular , Fenotipo , Mutación Puntual , Recombinación Genética
6.
J Infect Dis ; 188(4): 486-96, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12898434

RESUMEN

The highly diverse bacterium Helicobacter pylori, which persistently colonizes the human stomach, provides models to study the role of genome plasticity in host adaptation. Within H. pylori populations from 2 colonized individuals, intragenomic recombination between cagA DNA repeat sequences leads to deletion or duplication of tyrosine phosphorylation sites in the CagA protein, which is injected by a type IV secretion system into host cells. Experimental coculture of gastric epithelial cells with the strains containing these naturally occurring CagA phosphorylation site variants induced markedly divergent host cell morphologic responses. Mutants were constructed in which a phosphorylation site was either added or deleted in the expressed CagA protein; coculture studies confirmed that the naturally occurring differences in CagA phosphorylation are responsible for the observed phenotypic variation. These findings indicate that within an individual host, intragenomic recombination between H. pylori repetitive DNA produces strain variants differing in their signals to host cells.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Mucosa Gástrica/citología , Mucosa Gástrica/microbiología , Variación Genética , Helicobacter pylori/genética , Secuencia de Aminoácidos , Antígenos Bacterianos/química , Apoptosis , Proteínas Bacterianas/química , Secuencia de Bases , Línea Celular , Tamaño de la Célula , Técnicas de Cocultivo , Humanos , Interleucina-8/biosíntesis , Datos de Secuencia Molecular , Fenotipo , Fosforilación , Recombinación Genética/genética , Eliminación de Secuencia/genética , Estómago/citología , Estómago/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA