Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Sci Technol ; 58(18): 7958-7967, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38656997

RESUMEN

Because humans spend about one-third of their time asleep in their bedrooms and are themselves emission sources of volatile organic compounds (VOCs), it is important to specifically characterize the composition of the bedroom air that they experience during sleep. This work uses real-time indoor and outdoor measurements of volatile organic compounds (VOCs) to examine concentration enhancements in bedroom air during sleep and to calculate VOC emission rates associated with sleeping occupants. Gaseous VOCs were measured with proton-transfer reaction time-of-flight mass spectrometry during a multiweek residential monitoring campaign under normal occupancy conditions. Results indicate high emissions of nearly 100 VOCs and other species in the bedroom during sleeping periods as compared to the levels in other rooms of the same residence. Air change rates for the bedroom and, correspondingly, emission rates of sleeping-associated VOCs were determined for two bounding conditions: (1) air exchange between the bedroom and outdoors only and (2) air exchange between the bedroom and other indoor spaces only (as represented by measurements in the kitchen). VOCs from skin oil oxidation and personal care products were present, revealing that many emission pathways can be important occupant-associated emission factors affecting bedroom air composition in addition to direct emissions from building materials and furnishings.


Asunto(s)
Contaminación del Aire Interior , Sueño , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/análisis , Humanos , Monitoreo del Ambiente , Vivienda , Contaminantes Atmosféricos/análisis
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526680

RESUMEN

Outdoor ozone transported indoors initiates oxidative chemistry, forming volatile organic products. The influence of ozone chemistry on indoor air composition has not been directly quantified in normally occupied residences. Here, we explore indoor ozone chemistry in a house in California with two adult inhabitants. We utilize space- and time-resolved measurements of ozone and volatile organic compounds (VOCs) acquired over an 8-wk summer campaign. Despite overall low indoor ozone concentrations (mean value of 4.3 ppb) and a relatively low indoor ozone decay constant (1.3 h-1), we identified multiple VOCs exhibiting clear contributions from ozone-initiated chemistry indoors. These chemicals include 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), nonenal, and C8-C12 saturated aldehydes, which are among the commonly reported products from laboratory studies of ozone interactions with indoor surfaces and with human skin lipids. These VOCs together accounted for ≥12% molecular yield with respect to house-wide consumed ozone, with the highest net product yield for nonanal (≥3.5%), followed by 6-MHO (2.7%) and 4-OPA (2.6%). Although 6-MHO and 4-OPA are prominent ozonolysis products of skin lipids (specifically squalene), ozone reaction with the body envelopes of the two occupants in this house are insufficient to explain the observed yields. Relatedly, we observed that ozone-driven chemistry continued to produce 6-MHO and 4-OPA even after the occupants had been away from the house for 5 d. These observations provide evidence that skin lipids transferred to indoor surfaces made substantial contributions to ozone reactivity in the studied house.


Asunto(s)
Contaminantes Atmosféricos/química , Monitoreo del Ambiente , Ozono/química , Compuestos Orgánicos Volátiles/química , Contaminantes Atmosféricos/aislamiento & purificación , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/prevención & control , Aldehídos/química , California/epidemiología , Humanos , Cetonas/química , Lípidos/química , Oxidación-Reducción/efectos de los fármacos , Ozono/aislamiento & purificación , Ozono/metabolismo , Escualeno/química , Compuestos Orgánicos Volátiles/aislamiento & purificación
3.
Environ Sci Technol ; 57(8): 3260-3269, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36796310

RESUMEN

Semivolatile organic compounds (SVOCs) represent an important class of indoor pollutants. The partitioning of SVOCs between airborne particles and the adjacent air influences human exposure and uptake. Presently, little direct experimental evidence exists about the influence of indoor particle pollution on the gas-particle phase partitioning of indoor SVOCs. In this study, we present time-resolved gas- and particle-phase distribution data for indoor SVOCs in a normally occupied residence using semivolatile thermal desorption aerosol gas chromatography. Although SVOCs in indoor air are found mostly in the gas phase, we show that indoor particles from cooking, candle use, and outdoor particle infiltration strongly affect the gas-particle phase distribution of specific indoor SVOCs. From gas- and particle-phase measurements of SVOCs spanning a range of chemical functionalities (alkanes, alcohols, alkanoic acids, and phthalates) and volatilities (vapor pressures from 10-13 to 10-4 atm), we find that the chemical composition of the airborne particles influences the partitioning of individual SVOC species. During candle burning, the enhanced partitioning of gas-phase SVOCs to indoor particles not only affects the particle composition but also enhances surface off-gassing, thereby increasing the total airborne concentration of specific SVOCs, including diethylhexyl phthalate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Dietilhexil Ftalato , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/análisis , Dietilhexil Ftalato/análisis , Contaminantes Atmosféricos/análisis , Gases/análisis , Culinaria
4.
Environ Sci Technol ; 57(41): 15533-15545, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37791848

RESUMEN

Los Angeles is a major hotspot for ozone and particulate matter air pollution in the United States. Ozone and PM2.5 in this region have not improved substantially for the past decade, despite a reduction in vehicular emissions of their precursors, NOx and volatile organic compounds (VOCs). This reduction in "traditional" sources has made the current emission mixture of air pollutant precursors more uncertain. To map and quantify emissions of a wide range of VOCs in this urban area, we performed airborne eddy covariance measurements with wavelet analysis. VOC fluxes measured include tracers for source categories, such as traffic, vegetation, and volatile chemical products (VCPs). Mass fluxes were dominated by oxygenated VOCs, with ethanol contributing ∼29% of the total. In terms of OH reactivity and aerosol formation potential, terpenoids contributed more than half. Observed fluxes were compared with two commonly used emission inventories: the California Air Resources Board inventory and the combination of the Biogenic Emission Inventory System with the Fuel-based Inventory of Vehicle Emissions combined with Volatile Chemical Products (FIVE-VCP). The comparison shows mismatches regarding the amount, spatial distribution, and weekend effects of observed VOC emissions with the inventories. The agreement was best for typical transportation related VOCs, while discrepancies were larger for biogenic and VCP-related VOCs.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Estados Unidos , Compuestos Orgánicos Volátiles/análisis , Los Angeles , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Ozono/análisis , Monitoreo del Ambiente , China
5.
Environ Sci Technol ; 57(48): 19519-19531, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000445

RESUMEN

State inventories indicate that dairy operations account for nearly half of California's methane budget. Recent analyses suggest, however, that these emissions may be underestimated, complicating efforts to develop emission reduction strategies. Here, we report estimates of dairy methane emissions in the southern San Joaquin Valley (SJV) of California in June 2021 using airborne flux measurements. We find average dairy methane fluxes of 512 ± 178 mg m-2 h-1 from a region of 300+ dairies near Visalia, CA using a combination of eddy covariance and mass balance-based techniques, corresponding to 118 ± 41 kg dairy-1 h-1. These values estimated during our June campaign are 39 ± 48% larger than annual average estimates from the recently developed VISTA-CA inventory. We observed notable increases in emissions with temperature. Our estimates align well with inventory predictions when parametrizations for the temperature dependence of emissions are applied. Our measurements further demonstrate that the VISTA-CA emission inventory is considerably more accurate than the EPA GHG-I inventory in this region. Source apportionment analyses confirm that dairy operations produce the majority of methane emissions in the southern SJV (∼65%). Fugitive oil and gas (O&G) sources account for the remaining ∼35%. Our results support the accuracy of the process-based models used to develop dairy emission inventories and highlight the need for additional investigation of the meteorological dependence of these emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Metano/análisis , Ambiente , Gas Natural/análisis , California
6.
Environ Sci Technol ; 57(2): 896-908, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36603843

RESUMEN

The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Ozono , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Fotólisis , Contaminación del Aire Interior/análisis , Óxidos de Nitrógeno/análisis , Ozono/análisis , Culinaria , Ácido Nitroso/análisis , Ácido Nitroso/química , Contaminantes Atmosféricos/análisis
7.
Environ Sci Technol ; 56(12): 7598-7607, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35653434

RESUMEN

Isocyanic acid (HNCO) and other nitrogen-containing volatile chemicals (organic isocyanates, hydrogen cyanide, nitriles, amines, amides) were measured during the House Observation of Microbial and Environmental Chemistry (HOMEChem) campaign. The indoor HNCO mean mixing ratio was 0.14 ± 0.30 ppb (range 0.012-6.1 ppb), higher than outdoor levels (mean 0.026 ± 0.15 ppb). From the month-long study, cooking and chlorine bleach cleaning are identified as the most important human-related sources of these nitrogen-containing gases. Gas oven cooking emits more isocyanates than stovetop cooking. The emission ratios HNCO/CO (ppb/ppm) during stovetop and oven cooking (mean 0.090 and 0.30) are lower than previously reported values during biomass burning (between 0.76 and 4.6) and cigarette smoking (mean 2.7). Bleach cleaning led to an increase of the HNCO mixing ratio of a factor of 3.5 per liter of cleaning solution used; laboratory studies indicate that isocyanates arise via reaction of nitrogen-containing precursors, such as indoor dust. Partitioned in a temperature-dependent manner to indoor surface reservoirs, HNCO was present at the beginning of HOMEChem, arising from an unidentified source. HNCO levels are higher at the end of the campaign than the beginning, indicative of occupant activities such as cleaning and cooking; however the direct emissions of humans are relatively minor.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Culinaria , Cianatos , Monitoreo del Ambiente , Gases , Humanos , Isocianatos , Nitrógeno
8.
Environ Sci Technol ; 56(22): 15427-15436, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327170

RESUMEN

Volatile methyl siloxanes (VMS) are ubiquitous in indoor environments due to their use in personal care products. This paper builds on previous work identifying sources of VMS by synthesizing time-resolved proton-transfer reaction time-of-flight mass spectrometer VMS concentration measurements from four multiweek indoor air campaigns to elucidate emission sources and removal processes. Temporal patterns of VMS emissions display both continuous and episodic behavior, with the relative importance varying among species. We find that the cyclic siloxane D5 is consistently the most abundant VMS species, mainly attributable to personal care product use. Two other cyclic siloxanes, D3 and D4, are emitted from oven and personal care product use, with continuous sources also apparent. Two linear siloxanes, L4 and L5, are also emitted from personal care product use, with apparent additional continuous sources. We report measurements for three other organosilicon compounds found in personal care products. The primary air removal pathway of the species examined in this paper is ventilation to the outdoors, which has implications for atmospheric chemistry. The net removal rate is slower for linear siloxanes, which persist for days indoors after episodic release events. This work highlights the diversity in sources of organosilicon species and their persistence indoors.


Asunto(s)
Compuestos de Organosilicio , Siloxanos , Siloxanos/análisis , Monitoreo del Ambiente , Ventilación
9.
Environ Sci Technol ; 56(1): 109-118, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34910454

RESUMEN

Reactive organic carbon (ROC) comprises a substantial fraction of the total atmospheric carbon budget. Emissions of ROC fuel atmospheric oxidation chemistry to produce secondary pollutants including ozone, carbon dioxide, and particulate matter. Compared to the outdoor atmosphere, the indoor organic carbon budget is comparatively understudied. We characterized indoor ROC in a test house during unoccupied, cooking, and cleaning scenarios using various online mass spectrometry and gas chromatography measurements of gaseous and particulate organics. Cooking greatly impacted indoor ROC concentrations and bulk physicochemical properties (e.g., volatility and oxidation state), while cleaning yielded relatively insubstantial changes. Additionally, cooking enhanced the reactivities of hydroxyl radicals and ozone toward indoor ROC. We observed consistently higher median ROC concentrations indoors (≥223 µg C m-3) compared to outdoors (54 µg C m-3), demonstrating that buildings can be a net source of reactive carbon to the outdoor atmosphere, following its removal by ventilation. We estimate the unoccupied test house emitted 0.7 g C day-1 from ROC to outdoors. Indoor ROC emissions may thus play an important role in air quality and secondary pollutant formation outdoors, particularly in urban and suburban areas, and indoors during the use of oxidant-generating air purifiers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas , Material Particulado/análisis
10.
Environ Sci Technol ; 56(17): 12148-12157, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35952310

RESUMEN

Analytical capabilities in atmospheric chemistry provide new opportunities to investigate indoor air. HOMEChem was a chemically comprehensive indoor field campaign designed to investigate how common activities, such as cooking and cleaning, impacted indoor air in a test home. We combined gas-phase chemical data of all compounds, excluding those with concentrations <1 ppt, with established databases of health effect thresholds to evaluate potential risks associated with gas-phase air contaminants and indoor activities. The chemical composition of indoor air is distinct from outdoor air, with gaseous compounds present at higher levels and greater diversity─and thus greater predicted hazard quotients─indoors than outdoors. Common household activities like cooking and cleaning induce rapid changes in indoor air composition, raising levels of multiple compounds with high risk quotients. The HOMEChem data highlight how strongly human activities influence the air we breathe in the built environment, increasing the health risk associated with exposure to air contaminants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Culinaria , Monitoreo del Ambiente , Gases , Humanos , Material Particulado/análisis
11.
Environ Sci Technol ; 55(10): 6740-6751, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33945266

RESUMEN

Time spent in residences substantially contributes to human exposure to volatile organic compounds (VOCs). Such exposures have been difficult to study deeply, in part because VOC concentrations and indoor occupancy vary rapidly. Using a fast-response online mass spectrometer, we report time-resolved exposures from multi-season sampling of more than 200 VOCs in two California residences. Chemical-specific source apportionment revealed that time-averaged exposures for most VOCs were mainly attributable to continuous indoor emissions from buildings and their static contents. Also contributing to exposures were occupant-related activities, such as cooking, and outdoor-to-indoor transport. Health risk assessments are possible for a subset of observed VOCs. Acrolein, acetaldehyde, and acrylic acid concentrations were above chronic advisory health guidelines, whereas exposures for other assessable species were typically well below the guideline levels. Studied residences were built in the mid-20th century, indicating that VOC emissions even from older buildings and their contents can substantially contribute to occupant exposures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , California , Monitoreo del Ambiente , Vivienda , Humanos , Compuestos Orgánicos Volátiles/análisis
12.
Indoor Air ; 31(1): 88-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32779288

RESUMEN

Inhalation of particulate matter is associated with adverse health outcomes. The fluorescent portion of supermicron particulate matter has been used as a proxy for bioaerosols. The sources and emission rates of fluorescent particles in residential environments are not well-understood. Using an ultraviolet aerodynamic particle sizer (UVAPS), emissions of total and fluorescent supermicron particles from common human activities were investigated during the HOMEChem campaign, a test-house investigation of the chemistry of indoor environments. Human occupancy and activities, including cooking and mopping, were found to be considerable sources of indoor supermicron fluorescent particles, which enhanced the indoor particle concentrations by two orders of magnitude above baseline levels. The estimated total (fluorescent) mass emission rates for the activities tested were in the range of 4-30 (1-11) mg per person meal for cooking and 0.1-4.9 (0.05-4.7) mg/h for occupancy and mopping. Model calculations indicate that, once released, the dominant fate of coarse particles (2.5-10 micrometer in diameter) was deposition onto indoor surfaces, allowing for the possibility of subsequent resuspension and consequent exposures over durations much longer than the ventilation time scale. Indoor coarse particle deposition would also contribute to soiling of indoor surfaces.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Material Particulado/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Culinaria , Monitoreo del Ambiente , Vivienda , Humanos , Tamaño de la Partícula
13.
Indoor Air ; 31(6): 2099-2117, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34272904

RESUMEN

Quantifying speciated concentrations and emissions of volatile organic compounds (VOCs) is critical to understanding the processes that control indoor VOC dynamics, airborne chemistry, and human exposures. Here, we present source strength profiles from the HOMEChem study, quantifying speciated VOC emissions from scripted experiments (with multiple replicates) of cooking, cleaning, and human occupancy and from unperturbed baseline measurements of the building and its contents. Measurements using a proton transfer reaction time-of-flight mass spectrometer were combined with tracer-based determinations of air-change rates to enable mass-balance-based calculations of speciated, time-resolved VOC source strengths. The building and its contents were the dominant emission source into the house, with large emissions of acetic acid, methanol, and formic acid. Cooking emissions were greater than cleaning emissions and were dominated by ethanol. Bleach cleaning generated high emissions of chlorinated compounds, whereas natural product cleaning emitted predominantly terpenoids. Occupancy experiments showed large emissions of siloxanes from personal care products in the morning, with much lower emissions in the afternoon. From these results, VOC emissions were simulated for a hypothetical 24-h period, showing that emissions from the house and its contents make up nearly half of total indoor VOC emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Culinaria , Monitoreo del Ambiente , Humanos , Compuestos Orgánicos Volátiles/análisis
14.
Indoor Air ; 31(1): 141-155, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32696534

RESUMEN

Understanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study. We demonstrate how the complex spectra of EESI-MS are screened in order to extract chemical information and investigate the possibility of interference from gas-phase semivolatile species. During experiments that simulated the Thanksgiving US holiday meal preparation, EESI-MS quantified multiple species, including fatty acids, carbohydrates, siloxanes, and phthalates. Intercomparisons with Aerosol Mass Spectrometer (AMS) and Scanning Mobility Particle Sizer suggest that EESI-MS quantified a large fraction of OA. Comparisons with FIGAERO-CIMS shows similar signal levels and good correlation, with a range of 100 for the relative sensitivities. Comparisons with SV-TAG for phthalates and with SV-TAG and AMS for total siloxanes also show strong correlation. EESI-MS observations can be used with gas-phase measurements to identify co-emitted gas- and aerosol-phase species, and this is demonstrated using complementary gas-phase PTR-MS observations.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire Interior , Espectrometría de Masa por Ionización de Electrospray , Monitoreo del Ambiente/métodos , Compuestos Orgánicos
15.
Environ Sci Technol ; 54(11): 6751-6760, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32379430

RESUMEN

Measurements by semivolatile thermal desorption aerosol gas chromatography (SV-TAG) were used to investigate how semivolatile organic compounds (SVOCs) partition among indoor reservoirs in (1) a manufactured test house under controlled conditions (HOMEChem campaign) and (2) a single-family residence when vacant (H2 campaign). Data for phthalate diesters and siloxanes suggest that volatility-dependent partitioning processes modulate airborne SVOC concentrations through interactions with surface-laden condensed-phase reservoirs. Airborne concentrations of SVOCs with vapor pressures in the range of C13 to C23 alkanes were observed to be correlated with indoor air temperature. Observed temperature dependencies were quantitatively similar to theoretical predictions that assumed a surface-air boundary layer with equilibrium partitioning maintained at the air-surface interface. Airborne concentrations of SVOCs with vapor pressures corresponding to C25 to C31 alkanes correlated with airborne particle mass concentration. For SVOCs with higher vapor pressures, which are expected to be predominantly gaseous, correlations with particle mass concentration were weak or nonexistent. During primary particle emission events, enhanced gas-phase emissions from condensed-phase reservoirs partitioned to airborne particles, contributing substantially to organic particulate matter. An emission event related to oven-usage was inferred to deposit siloxanes in condensed-phase reservoirs throughout the house, leading to the possibility of reemission during subsequent periods with high particle loading.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Vivienda , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis , Volatilización
16.
Environ Sci Technol ; 54(3): 1730-1739, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31940195

RESUMEN

We report elevated levels of gaseous inorganic chlorinated and nitrogenated compounds in indoor air while cleaning with a commercial bleach solution during the House Observations of Microbial and Environmental Chemistry field campaign in summer 2018. Hypochlorous acid (HOCl), chlorine (Cl2), and nitryl chloride (ClNO2) reached part-per-billion by volume levels indoors during bleach cleaning-several orders of magnitude higher than typically measured in the outdoor atmosphere. Kinetic modeling revealed that multiphase chemistry plays a central role in controlling indoor chlorine and reactive nitrogen chemistry during these periods. Cl2 production occurred via heterogeneous reactions of HOCl on indoor surfaces. ClNO2 and chloramine (NH2Cl, NHCl2, NCl3) production occurred in the applied bleach via aqueous reactions involving nitrite (NO2-) and ammonia (NH3), respectively. Aqueous-phase and surface chemistry resulted in elevated levels of gas-phase nitrogen dioxide (NO2). We predict hydroxyl (OH) and chlorine (Cl) radical production during these periods (106 and 107 molecules cm-3 s-1, respectively) driven by HOCl and Cl2 photolysis. Ventilation and photolysis accounted for <50% and <0.1% total loss of bleach-related compounds from indoor air, respectively; we conclude that uptake to indoor surfaces is an important additional loss process. Indoor HOCl and nitrogen trichloride (NCl3) mixing ratios during bleach cleaning reported herein are likely detrimental to human health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Cloro , Gases , Humanos , Ácido Hipocloroso , Ventilación
17.
Environ Sci Technol ; 53(24): 14441-14448, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31757120

RESUMEN

Previous work examining the condensed-phase products of squalene particle ozonolysis found that an increase in water vapor concentration led to lower concentrations of secondary ozonides, increased concentrations of carbonyls, and smaller particle diameter, suggesting that water changes the fate of the Criegee intermediate. To determine if this volume loss corresponds to an increase in gas-phase products, we measured gas-phase volatile organic compound (VOC) concentrations via proton-transfer-reaction time-of-flight mass spectrometry. Studies were conducted in a flow-tube reactor at atmospherically relevant ozone (O3) exposure levels (5-30 ppb h) with pure squalene particles. An increase in water vapor concentration led to strong enhancement of gas-phase oxidation products at all tested O3 exposures. An increase in water vapor from near zero to 70% relative humidity (RH) at high O3 exposure increased the total mass concentration of gas-phase VOCs by a factor of 3. The observed fraction of carbon in the gas-phase correlates with the fraction of particle volume lost. Experiments involving O3 oxidation of shirts soiled with skin oil confirms that the RH dependence of gas-phase reaction product generation occurs similarly on surfaces containing skin oil under realistic conditions. Similar behavior is expected for O3 reactions with other surface-bound organics containing unsaturated carbon bonds.


Asunto(s)
Ozono , Escualeno , Espectrometría de Masas , Compuestos Orgánicos , Vapor
18.
Environ Sci Technol ; 53(13): 7337-7346, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31180211

RESUMEN

Phthalate esters, commonly used as plasticizers, can be found indoors in the gas phase, in airborne particulate matter, in dust, and on surfaces. The dynamic behavior of phthalates indoors is not fully understood. In this study, time-resolved measurements of airborne phthalate concentrations and associated gas-particle partitioning data were acquired in a normally occupied residence. The vapor pressure and associated gas-particle partitioning of measured phthalates influenced their airborne dynamic behavior. Concentrations of higher vapor pressure phthalates correlated well with indoor temperature, with little discernible influence from direct occupant activity. Conversely, occupant-related behaviors substantially influenced the concentrations and dynamic behavior of a lower vapor pressure compound, diethylhexyl phthalate (DEHP), mainly through production of particulate matter during cooking events. The proportion of airborne DEHP in the particle phase was experimentally observed to increase under higher particle mass concentrations and lower indoor temperatures in correspondence with theory. Experimental observations indicate that indoor surfaces of the residence are large reservoirs of phthalates. The results also indicate that two key factors influenced by human behavior-temperature and particle mass concentration-cause short-term changes in airborne phthalate concentrations.


Asunto(s)
Contaminación del Aire Interior , Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Plastificantes
19.
Indoor Air ; 29(4): 645-655, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004533

RESUMEN

Semivolatile organic compounds (SVOCs) emitted from building materials, consumer products, and occupant activities alter the composition of air in residences where people spend most of their time. Exposures to specific SVOCs potentially pose risks to human health. However, little is known about the chemical complexity, total burden, and dynamic behavior of SVOCs in residential environments. Furthermore, little is known about the influence of human occupancy on the emissions and fates of SVOCs in residential air. Here, we present the first-ever hourly measurements of airborne SVOCs in a residence during normal occupancy. We employ state-of-the-art semivolatile thermal-desorption aerosol gas chromatography (SV-TAG). Indoor air is shown consistently to contain much higher levels of SVOCs than outdoors, in terms of both abundance and chemical complexity. Time-series data are characterized by temperature-dependent elevated background levels for a broad suite of chemicals, underlining the importance of continuous emissions from static indoor sources. Substantial increases in SVOC concentrations were associated with episodic occupant activities, especially cooking and cleaning. The number of occupants within the residence showed little influence on the total airborne SVOC concentration. Enhanced ventilation was effective in reducing SVOCs in indoor air, but only temporarily; SVOCs recovered to previous levels within hours.


Asunto(s)
Contaminación del Aire Interior/análisis , Vivienda , Compuestos Orgánicos Volátiles/análisis , California , Materiales de Construcción , Culinaria , Monitoreo del Ambiente/métodos , Humanos , San Francisco , Ventilación
20.
Indoor Air ; 29(4): 630-644, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004537

RESUMEN

We investigate source characteristics and emission dynamics of volatile organic compounds (VOCs) in a single-family house in California utilizing time- and space-resolved measurements. About 200 VOC signals, corresponding to more than 200 species, were measured during 8 weeks in summer and five in winter. Spatially resolved measurements, along with tracer data, reveal that VOCs in the living space were mainly emitted directly into that space, with minor contributions from the crawlspace, attic, or outdoors. Time-resolved measurements in the living space exhibited baseline levels far above outdoor levels for most VOCs; many compounds also displayed patterns of intermittent short-term enhancements (spikes) well above the indoor baseline. Compounds were categorized as "high-baseline" or "spike-dominated" based on indoor-to-outdoor concentration ratio and indoor mean-to-median ratio. Short-term spikes were associated with occupants and their activities, especially cooking. High-baseline compounds indicate continuous indoor emissions from building materials and furnishings. Indoor emission rates for high-baseline species, quantified with 2-hour resolution, exhibited strong temperature dependence and were affected by air-change rates. Decomposition of wooden building materials is suggested as a major source for acetic acid, formic acid, and methanol, which together accounted for ~75% of the total continuous indoor emissions of high-baseline species.


Asunto(s)
Contaminación del Aire Interior/análisis , Materiales de Construcción , Diseño Interior y Mobiliario , Compuestos Orgánicos Volátiles/análisis , California , Materiales de Construcción/efectos adversos , Culinaria , Monitoreo del Ambiente , Femenino , Vivienda , Humanos , Masculino , Persona de Mediana Edad , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA