Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 14(4): e1007314, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29617376

RESUMEN

Commissural axons must cross the midline to establish reciprocal connections between the two sides of the body. This process is highly conserved between invertebrates and vertebrates and depends on guidance cues and their receptors to instruct axon trajectories. The DCC family receptor Frazzled (Fra) signals chemoattraction and promotes midline crossing in response to its ligand Netrin. However, in Netrin or fra mutants, the loss of crossing is incomplete, suggesting the existence of additional pathways. Here, we identify Brain Tumor (Brat), a tripartite motif protein, as a new regulator of midline crossing in the Drosophila CNS. Genetic analysis indicates that Brat acts independently of the Netrin/Fra pathway. In addition, we show that through its B-Box domains, Brat acts cell autonomously to regulate the expression and localization of Adenomatous polyposis coli-2 (Apc2), a key component of the Wnt canonical signaling pathway, to promote axon growth across the midline. Genetic evidence indicates that the role of Brat and Apc2 to promote axon growth across the midline is independent of Wnt and Beta-catenin-mediated transcriptional regulation. Instead, we propose that Brat promotes midline crossing through directing the localization or stability of Apc2 at the plus ends of microtubules in navigating commissural axons. These findings define a new mechanism in the coordination of axon growth and guidance at the midline.


Asunto(s)
Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación Fluorescente in Situ , Microtúbulos/metabolismo , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Unión Proteica , Transducción de Señal/genética
2.
Proc Natl Acad Sci U S A ; 108(6): 2276-81, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21262810

RESUMEN

Hox genes encode transcription factors widely used for diversifying animal body plans in development and evolution. To achieve functional specificity, Hox proteins associate with PBC class proteins, Pre-B cell leukemia homeobox (Pbx) in vertebrates, and Extradenticle (Exd) in Drosophila, and were thought to use a unique hexapeptide-dependent generic mode of interaction. Recent findings, however, revealed the existence of an alternative, UbdA-dependent paralog-specific interaction mode providing diversity in Hox-PBC interactions. In this study, we investigated the basis for the selection of one of these two Hox-PBC interaction modes. Using naturally occurring variations and mutations in the Drosophila Ultrabithorax protein, we found that the linker region, a short domain separating the hexapeptide from the homeodomain, promotes an interaction mediated by the UbdA domain in a context-dependent manner. While using a UbdA-dependent interaction for the repression of the limb-promoting gene Distalless, interaction with Exd during segment-identity specification still relies on the hexapeptide motif. We further show that distinctly assembled Hox-PBC complexes display subtle but distinct repressive activities. These findings identify Hox-PBC interaction as a template for subtle regulation of Hox protein activity that may have played a major role in the diversification of Hox protein function in development and evolution.


Asunto(s)
Proteínas de Drosophila/metabolismo , Evolución Molecular , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Homeodominio/genética , Estructura Terciaria de Proteína , Factores de Transcripción/genética
3.
Front Genet ; 12: 683959, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349780

RESUMEN

Camk2a-Cre mice have been widely used to study the postnatal function of several genes in forebrain projection neurons, including cortical projection neurons (CPNs) and striatal medium-sized spiny neurons (MSNs). We linked heterozygous deletion of TSHZ3/Tshz3 gene to autism spectrum disorder (ASD) and used Camk2a-Cre mice to investigate the postnatal function of Tshz3, which is expressed by CPNs but not MSNs. Recently, single-cell transcriptomics of the adult mouse striatum revealed the expression of Camk2a in interneurons and showed Tshz3 expression in striatal cholinergic interneurons (SCINs), which are attracting increasing interest in the field of ASD. These data and the phenotypic similarity between the mice with Tshz3 haploinsufficiency and Camk2a-Cre-dependent conditional deletion of Tshz3 (Camk2a-cKO) prompted us to better characterize the expression of Tshz3 and the activity of Camk2a-Cre transgene in the striatum. Here, we show that the great majority of Tshz3-expressing cells are SCINs and that all SCINs express Tshz3. Using lineage tracing, we demonstrate that the Camk2a-Cre transgene is expressed in the SCIN lineage where it can efficiently elicit the deletion of the Tshz3-floxed allele. Moreover, transcriptomic and bioinformatic analysis in Camk2a-cKO mice showed dysregulated striatal expression of a number of genes, including genes whose human orthologues are associated with ASD and synaptic signaling. These findings identifying the expression of the Camk2a-Cre transgene in SCINs lineage lead to a reappraisal of the interpretation of experiments using Camk2a-Cre-dependent gene manipulations. They are also useful to decipher the cellular and molecular substrates of the ASD-related behavioral abnormalities observed in Tshz3 mouse models.

4.
Elife ; 4: e08407, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26186094

RESUMEN

During nervous system development, commissural axons cross the midline despite the presence of repellant ligands. In Drosophila, commissural axons avoid premature responsiveness to the midline repellant Slit by expressing the endosomal sorting receptor Commissureless, which reduces surface expression of the Slit receptor Roundabout1 (Robo1). In this study, we describe a distinct mechanism to inhibit Robo1 repulsion and promote midline crossing, in which Roundabout2 (Robo2) binds to and prevents Robo1 signaling. Unexpectedly, we find that Robo2 is expressed in midline cells during the early stages of commissural axon guidance, and that over-expression of Robo2 can rescue robo2-dependent midline crossing defects non-cell autonomously. We show that the extracellular domains required for binding to Robo1 are also required for Robo2's ability to promote midline crossing, in both gain-of-function and rescue assays. These findings indicate that at least two independent mechanisms to overcome Slit-Robo1 repulsion in pre-crossing commissural axons have evolved in Drosophila.


Asunto(s)
Interneuronas Comisurales/fisiología , Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Animales , Drosophila , Unión Proteica , Mapeo de Interacción de Proteínas , Transducción de Señal , Proteínas Roundabout
5.
Nat Commun ; 6: 6366, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25721514

RESUMEN

The spatial orientation of cell divisions is fundamental for tissue architecture and homeostasis. Here we analysed neuroepithelial progenitors in the developing mouse spinal cord to determine whether extracellular signals orient the mitotic spindle. We report that Semaphorin3B (Sema3B) released from the floor plate and the nascent choroid plexus in the cerebrospinal fluid (CSF) controls progenitor division orientation. Delivery of exogenous Sema3B to neural progenitors after neural tube opening in living embryos promotes planar orientation of their division. Preventing progenitor access to cues present in the CSF by genetically engineered canal obstruction affects the proportion of planar and oblique divisions. Sema3B knockout phenocopies the loss of progenitor access to the CSF. Sema3B binds to the apical surface of mitotic progenitors and exerts its effect via Neuropilin receptors, GSK3 activation and subsequent inhibition of the microtubule stabilizer CRMP2. Thus, extrinsic control mediated by the Semaphorin signalling orients progenitor divisions in neurogenic zones.


Asunto(s)
División Celular/fisiología , Polaridad Celular/fisiología , Células Neuroepiteliales/fisiología , Semaforinas/líquido cefalorraquídeo , Semaforinas/metabolismo , Médula Espinal/embriología , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuropilinas/metabolismo , Médula Espinal/citología , Estadísticas no Paramétricas
6.
J Vis Exp ; (84): e50884, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24561889

RESUMEN

During development, progenitors and post-mitotic neurons receive signals from adjacent territories that regulate their fate. The floor-plate is a group of glial cells lining the ependymal canal at ventral position. The floor-plate expresses key morphogens contributing to the patterning of cell lineages in the spinal cord. At later developmental stages, the floor-plate regulates the navigation of axons in the spinal cord, acting as a barrier to prevent the crossing of ipsilateral axons and controlling midline crossing by commissural axons(1). These functions are achieved through the secretion of various guidance cues. Some of these cues act as attractants and repellents for the growing axons while others regulate guidance receptors and downstream signaling to modulate the sensitivity of the axons to the local guidance cues(2,3). Here we describe a method that allows investigating the properties of floor-plate derived signals in a variety of developmental contexts, based on the production of Floor-Plate conditioned medium (FP(cm))(4-6). We then exemplify the use of this FP(cm) in the context of axon guidance. First, the spinal cord is isolated from mouse embryo at E12.5 and the floor-plate is dissected out and cultivated in a plasma-thrombin matrix (Figure 1). Second two days later, commissural tissue are dissected out from E12.5 embryos, triturated and exposed to the FP(cm). Third, the tissue are processed for Western blot analysis of commissural markers.


Asunto(s)
Médula Espinal/fisiología , Técnicas de Cultivo de Tejidos/métodos , Animales , Western Blotting , Medios de Cultivo Condicionados , Ratones , Células-Madre Neurales/citología , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA