Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 390(23): 2156-2164, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899694

RESUMEN

BACKGROUND: Variants in APOE and PSEN1 (encoding apolipoprotein E and presenilin 1, respectively) alter the risk of Alzheimer's disease. We previously reported a delay of cognitive impairment in a person with autosomal dominant Alzheimer's disease caused by the PSEN1 E280A variant who also had two copies of the apolipoprotein E3 Christchurch variant (APOE3 Ch). Heterozygosity for the APOE3 Ch variant may influence the age at which the onset of cognitive impairment occurs. We assessed this hypothesis in a population in which the PSEN1 E280A variant is prevalent. METHODS: We analyzed data from 27 participants with one copy of the APOE3 Ch variant among 1077 carriers of the PSEN1 E280A variant in a kindred from Antioquia, Colombia, to estimate the age at the onset of cognitive impairment and dementia in this group as compared with persons without the APOE3 Ch variant. Two participants underwent brain imaging, and autopsy was performed in four participants. RESULTS: Among carriers of PSEN1 E280A who were heterozygous for the APOE3 Ch variant, the median age at the onset of cognitive impairment was 52 years (95% confidence interval [CI], 51 to 58), in contrast to a matched group of PSEN1 E280A carriers without the APOE3 Ch variant, among whom the median age at the onset was 47 years (95% CI, 47 to 49). In two participants with the APOE3 Ch and PSEN1 E280A variants who underwent brain imaging, 18F-fluorodeoxyglucose positron-emission tomographic (PET) imaging showed relatively preserved metabolic activity in areas typically involved in Alzheimer's disease. In one of these participants, who underwent 18F-flortaucipir PET imaging, tau findings were limited as compared with persons with PSEN1 E280A in whom cognitive impairment occurred at the typical age in this kindred. Four studies of autopsy material obtained from persons with the APOE3 Ch and PSEN1 E280A variants showed fewer vascular amyloid pathologic features than were seen in material obtained from persons who had the PSEN1 E280A variant but not the APOE3 Ch variant. CONCLUSIONS: Clinical data supported a delayed onset of cognitive impairment in persons who were heterozygous for the APOE3 Ch variant in a kindred with a high prevalence of autosomal dominant Alzheimer's disease. (Funded by Good Ventures and others.).


Asunto(s)
Edad de Inicio , Enfermedad de Alzheimer , Apolipoproteína E3 , Heterocigoto , Presenilina-1 , Humanos , Enfermedad de Alzheimer/genética , Presenilina-1/genética , Femenino , Masculino , Persona de Mediana Edad , Apolipoproteína E3/genética , Tomografía de Emisión de Positrones , Anciano , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Adulto , Genes Dominantes , Colombia
2.
Alzheimers Dement ; 20(2): 819-836, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37791598

RESUMEN

INTRODUCTION: We discovered that the APOE3 Christchurch (APOE3Ch) variant may provide resistance to Alzheimer's disease (AD). This resistance may be due to reduced pathological interactions between ApoE3Ch and heparan sulfate proteoglycans (HSPGs). METHODS: We developed and characterized the binding, structure, and preclinical efficacy of novel antibodies targeting human ApoE-HSPG interactions. RESULTS: We found that one of these antibodies, called 7C11, preferentially bound ApoE4, a major risk factor for sporadic AD, and disrupts heparin-ApoE4 interactions. We also determined the crystal structure of a Fab fragment of 7C11 and used computer modeling to predict how it would bind to ApoE. When we tested 7C11 in mouse models, we found that it reduced recombinant ApoE-induced tau pathology in the retina of MAPT*P301S mice and curbed pTau S396 phosphorylation in brains of systemically treated APOE4 knock-in mice. Targeting ApoE-HSPG interactions using 7C11 antibody may be a promising approach to developing new therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Humanos , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Fosforilación , Apolipoproteínas E/metabolismo , Enfermedad de Alzheimer/patología , Factores Inmunológicos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo
3.
Am J Pathol ; 191(11): 1856-1870, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33895122

RESUMEN

Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/patología , Agregación Patológica de Proteínas/patología , Receptor Notch3/metabolismo , Animales , CADASIL/genética , CADASIL/metabolismo , CADASIL/patología , Enfermedades de los Pequeños Vasos Cerebrales/genética , Humanos , Mutación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Receptor Notch3/genética , Transducción de Señal/fisiología
4.
Am J Pathol ; 191(3): 418-424, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33345998

RESUMEN

Choroidal neovascularization (CNV) is a prevalent cause of vision loss in patients with age-related macular degeneration. Runt-related transcription factor 1 (RUNX1) has been identified as an important mediator of aberrant retinal angiogenesis in proliferative diabetic retinopathy and its modulation has proven to be effective in curbing pathologic angiogenesis in experimental oxygen-induced retinopathy. However, its role in CNV remains to be elucidated. This study demonstrates RUNX1 expression in critical cell types involved in a laser-induced model of CNV in mice. Furthermore, the preclinical efficacy of Ro5-3335, a small molecule inhibitor of RUNX1, in experimental CNV is reported. RUNX1 inhibitor Ro5-3335, aflibercept-an FDA-approved vascular endothelial growth factor (VEGF) inhibitor, or a combination of both, were administered by intravitreal injection immediately after laser injury. The CNV area of choroidal flatmounts was evaluated by immunostaining with isolectin B4, and vascular permeability was analyzed by fluorescein angiography. A single intravitreal injection of Ro5-3335 significantly decreased the CNV area 7 days after laser injury, and when combined with aflibercept, reduced vascular leakage more effectively than aflibercept alone. These data suggest that RUNX1 inhibition alone or in combination with anti-VEGF drugs may be a new therapy upon further clinical validation for patients with neovascular age-related macular degeneration.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neovascularización Coroidal/tratamiento farmacológico , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Factores de Crecimiento Endotelial Vascular
5.
Am J Pathol ; 191(7): 1193-1208, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33894177

RESUMEN

Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-ß1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Furina/metabolismo , Pulmón/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bleomicina , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Resultado del Tratamiento
6.
Acta Neuropathol ; 144(3): 589-601, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35838824

RESUMEN

We describe in vivo follow-up PET imaging and postmortem findings from an autosomal dominant Alzheimer's disease (ADAD) PSEN1 E280A carrier who was also homozygous for the APOE3 Christchurch (APOE3ch) variant and was protected against Alzheimer's symptoms for almost three decades beyond the expected age of onset. We identified a distinct anatomical pattern of tau pathology with atypical accumulation in vivo and unusual postmortem regional distribution characterized by sparing in the frontal cortex and severe pathology in the occipital cortex. The frontal cortex and the hippocampus, less affected than the occipital cortex by tau pathology, contained Related Orphan Receptor B (RORB) positive neurons, homeostatic astrocytes and higher APOE expression. The occipital cortex, the only cortical region showing cerebral amyloid angiopathy (CAA), exhibited a distinctive chronic inflammatory microglial profile and lower APOE expression. Thus, the Christchurch variant may impact the distribution of tau pathology, modulate age at onset, severity, progression, and clinical presentation of ADAD, suggesting possible therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Encéfalo/patología , Homocigoto , Humanos , Tomografía de Emisión de Positrones , Proteínas tau/genética , Proteínas tau/metabolismo
7.
FASEB J ; 35(2): e21155, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33135824

RESUMEN

Runt-related transcription factor 1 (RUNX1) acts as a mediator of aberrant retinal angiogenesis and has been implicated in the progression of proliferative diabetic retinopathy (PDR). Patients with PDR, retinopathy of prematurity (ROP), and wet age-related macular degeneration (wet AMD) have been found to have elevated levels of Tumor Necrosis Factor-alpha (TNF-α) in the eye. In fibrovascular membranes (FVMs) taken from patients with PDR RUNX1 expression was increased in the vasculature, while in human retinal microvascular endothelial cells (HRMECs), TNF-α stimulation causes increased RUNX1 expression, which can be modulated by RUNX1 inhibitors. Using TNF-α pathway inhibitors, we determined that in HRMECs, TNF-α-induced RUNX1 expression occurs via JNK activation, while NF-κB and p38/MAPK inhibition did not affect RUNX1 expression. JNK inhibitors were also effective at stopping high D-glucose-stimulated RUNX1 expression. We further linked JNK to RUNX1 through Activator Protein 1 (AP-1) and investigated the JNK-AP-1-RUNX1 regulatory feedback loop, which can be modulated by VEGF. Additionally, stimulation with TNF-α and D-glucose had an additive effect on RUNX1 expression, which was downregulated by VEGF modulation. These data suggest that the downregulation of RUNX1 in conjunction with anti-VEGF agents may be important in future treatments for the management of diseases of pathologic ocular angiogenesis.


Asunto(s)
Neovascularización Coroidal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Retinopatía de la Prematuridad/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Degeneración Macular Húmeda/metabolismo , Animales , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Glucosa/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Retina/citología , Retina/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
J Int Neuropsychol Soc ; 26(10): 1006-1018, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32487276

RESUMEN

OBJECTIVES: Executive dysfunction is a predominant cognitive symptom in cerebral small vessel disease (SVD). The Institute of Cognitive Neurology Frontal Screening (IFS) is a well-validated screening tool allowing the rapid assessment of multiple components of executive function in Spanish-speaking individuals. In this study, we examined performance on the IFS in subjects with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), an inherited condition leading to the early onset of SVD. We further explored associations between performance on the IFS and magnetic resonance imaging (MRI) markers of SVD. METHODS: We recruited 24 asymptomatic CADASIL subjects and 23 noncarriers from Colombia. All subjects underwent a research MRI and a neuropsychological evaluation, including the IFS. Structural MRI markers of SVD were quantified in each subject, together with an SVD Sum Score representing the overall burden of cerebrovascular alterations. General linear model, correlation, and receiver operating characteristic curve analyses were used to explore group differences on the IFS and relationships with MRI markers of SVD. RESULTS: CADASIL subjects had a significantly reduced performance on the IFS Total Score. Performance on the IFS correlated with all quantified markers of SVD, except for brain atrophy and perivascular spaces enlargement. Finally, while the IFS Total Score was not able to accurately discriminate between carriers and noncarriers, it showed adequate sensitivity and specificity in detecting the presence of multiple MRI markers of SVD. CONCLUSIONS: These results suggest that the IFS may be a useful screening tool to assess executive function and disease severity in the context of SVD.


Asunto(s)
CADASIL/psicología , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Disfunción Cognitiva/diagnóstico por imagen , Función Ejecutiva/fisiología , Imagen por Resonancia Magnética , Adulto , Trastornos del Conocimiento , Estudios de Cohortes , Colombia , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
10.
Am J Pathol ; 184(10): 2618-26, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25092275

RESUMEN

Diabetes can lead to vision loss because of progressive degeneration of the neurovascular unit in the retina, a condition known as diabetic retinopathy. In its early stages, the pathology is characterized by microangiopathies, including microaneurysms, microhemorrhages, and nerve layer infarcts known as cotton-wool spots. Analyses of postmortem human retinal tissue and retinas from animal models indicate that degeneration of the pericytes, which constitute the outer layer of capillaries, is an early event in diabetic retinopathy; however, the relative contribution of specific cellular components to the pathobiology of diabetic retinopathy remains to be defined. We investigated the phenotypic consequences of pericyte death on retinal microvascular integrity by using nondiabetic mice conditionally expressing a diphtheria toxin receptor in mural cells. Five days after administering diphtheria toxin in these adult mice, changes were observed in the retinal vasculature that were similar to those observed in diabetes, including microaneurysms and increased vascular permeability, suggesting that pericyte cell loss is sufficient to trigger retinal microvascular degeneration. Therapies aimed at preventing or delaying pericyte dropout may avoid or attenuate the retinal microangiopathy associated with diabetes.


Asunto(s)
Retinopatía Diabética/patología , Pericitos/patología , Retina/patología , Vasos Retinianos/patología , Animales , Capilares/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microvasos/patología , Degeneración Retiniana
11.
Mol Vis ; 21: 673-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26120272

RESUMEN

PURPOSE: Epiretinal fibrovascular membranes (FVMs) are a hallmark of proliferative diabetic retinopathy (PDR). Surgical removal of FVMs is often indicated to treat tractional retinal detachment. This potentially informative pathological tissue is usually disposed of after surgery without further examination. We developed a method for isolating and characterizing cells derived from FVMs and correlated their expression of specific markers in culture with that in tissue. METHODS: FVMs were obtained from 11 patients with PDR during diabetic vitrectomy surgery and were analyzed with electron microscopy (EM), comparative genomic hybridization (CGH), immunohistochemistry, and/or digested with collagenase II for cell isolation and culture. Antibody arrays and enzyme-linked immunosorbent assay (ELISA) were used to profile secreted angiogenesis-related proteins in cell culture supernatants. RESULTS: EM analysis of the FVMs showed abnormal vessels composed of endothelial cells with large nuclei and plasma membrane infoldings, loosely attached perivascular cells, and stromal cells. The cellular constituents of the FVMs lacked major chromosomal aberrations as shown with CGH. Cells derived from FVMs (C-FVMs) could be isolated and maintained in culture. The C-FVMs retained the expression of markers of cell identity in primary culture, which define specific cell populations including CD31-positive, alpha-smooth muscle actin-positive (SMA), and glial fibrillary acidic protein-positive (GFAP) cells. In primary culture, secretion of angiopoietin-1 and thrombospondin-1 was significantly decreased in culture conditions that resemble a diabetic environment in SMA-positive C-FVMs compared to human retinal pericytes derived from a non-diabetic donor. CONCLUSIONS: C-FVMs obtained from individuals with PDR can be isolated, cultured, and profiled in vitro and may constitute a unique resource for the discovery of cell signaling mechanisms underlying PDR that extends beyond current animal and cell culture models.


Asunto(s)
Retinopatía Diabética/patología , Actinas/metabolismo , Adulto , Angiopoyetina 1/metabolismo , Proliferación Celular , Separación Celular , Células Cultivadas , Hibridación Genómica Comparativa , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Membrana Epirretinal/genética , Membrana Epirretinal/metabolismo , Membrana Epirretinal/patología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
12.
Curr Diab Rep ; 15(2): 573, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25620405

RESUMEN

Pericytes, the mural cells that constitute the capillaries along with endothelial cells, have been associated with the pathobiology of diabetic retinopathy; however, therapeutic implications of this association remain largely unexplored. Pericytes appear to be highly susceptible to the metabolic challenges associated with a diabetic environment, and there is substantial evidence that their loss may contribute to microvascular instability leading to the formation of microaneurysms, microhemorrhages, acellular capillaries, and capillary nonperfusion. Since pericytes are strategically located at the interface between the vascular and neural components of the retina, they offer extraordinary opportunities for therapeutic interventions in diabetic retinopathy. Moreover, the availability of novel imaging methodologies now allows for the in vivo visualization of pericytes, enabling a new generation of clinical trials that use pericyte tracking as clinical endpoints. The recognition of multiple signaling mechanisms involved in pericyte development and survival should allow for a renewed interest in pericytes as a therapeutic target for diabetic retinopathy.


Asunto(s)
Ceguera/prevención & control , Retinopatía Diabética/fisiopatología , Endotelio Vascular/fisiopatología , Terapia Molecular Dirigida , Pericitos/metabolismo , Retina/fisiopatología , Neovascularización Retiniana/fisiopatología , Retinopatía Diabética/patología , Retinopatía Diabética/terapia , Progresión de la Enfermedad , Humanos , Transducción de Señal
14.
Proc Natl Acad Sci U S A ; 108(21): E128-35, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21555590

RESUMEN

The most common monogenic cause of small-vessel disease leading to ischemic stroke and vascular dementia is the neurodegenerative syndrome cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), which is associated with mutations in the Notch 3 receptor. CADASIL pathology is characterized by vascular smooth muscle cell degeneration and accumulation of diagnostic granular osmiophilic material (GOM) in vessels. The functional nature of the Notch 3 mutations causing CADASIL and their mechanistic connection to small-vessel disease and GOM accumulation remain enigmatic. To gain insight into how Notch 3 function is linked to CADASIL pathophysiology, we studied two phenotypically distinct mutations, C455R and R1031C, respectively associated with early and late onset of stroke, by using hemodynamic analyses in transgenic mouse models, receptor activity assays in cell culture, and proteomic examination of postmortem human tissue. We demonstrate that the C455R and R1031C mutations define different hypomorphic activity states of Notch 3, a property linked to ischemic stroke susceptibility in mouse models we generated. Importantly, these mice develop osmiophilic deposits and other age-dependent phenotypes that parallel remarkably the human condition. Proteomic analysis of human brain vessels, carrying the same CADASIL mutations, identified clusterin and collagen 18 α1/endostatin as GOM components. Our findings link loss of Notch signaling with ischemic cerebral small-vessel disease, a prevalent human condition. We determine that CADASIL pathophysiology is associated with hypomorphic Notch 3 function in vascular smooth muscle cells and implicate the accumulation of clusterin and collagen 18 α1/endostatin in brain vessel pathology.


Asunto(s)
Alelos , Arteriolas/patología , Trastornos Cerebrovasculares/etiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/irrigación sanguínea , Modelos Animales de Enfermedad , Humanos , Isquemia , Ratones , Mutación Missense , Receptor Notch3 , Receptores Notch/genética , Transgenes
15.
Front Mol Neurosci ; 17: 1373568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571814

RESUMEN

A patient with the PSEN1 E280A mutation and homozygous for APOE3 Christchurch (APOE3Ch) displayed extreme resistance to Alzheimer's disease (AD) cognitive decline and tauopathy, despite having a high amyloid burden. To further investigate the differences in biological processes attributed to APOE3Ch, we generated induced pluripotent stem (iPS) cell-derived cerebral organoids from this resistant case and a non-protected control, using CRISPR/Cas9 gene editing to modulate APOE3Ch expression. In the APOE3Ch cerebral organoids, we observed a protective pattern from early tau phosphorylation. ScRNA sequencing revealed regulation of Cadherin and Wnt signaling pathways by APOE3Ch, with immunostaining indicating elevated ß-catenin protein levels. Further in vitro reporter assays unexpectedly demonstrated that ApoE3Ch functions as a Wnt3a signaling enhancer. This work uncovered a neomorphic molecular mechanism of protection of ApoE3 Christchurch, which may serve as the foundation for the future development of protected case-inspired therapeutics targeting AD and tauopathies.

16.
Brain Pathol ; 33(2): e13119, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36130084

RESUMEN

In response to brain insults, astrocytes become reactive, promoting protection and tissue repair. However, astroglial reactivity is typical of brain pathologies, including Alzheimer's disease (AD). Considering the heterogeneity of the reactive response, the role of astrocytes in the course of different forms of AD has been underestimated. Colombia has the largest human group known to have familial AD (FAD). This group carries the autosomal dominant and fully penetrant mutation E280A in PSEN1, which causes early-onset AD. Recently, our group identified an E280A carrier who did not develop FAD. The individual was homozygous for the Christchurch mutation R136S in APOE3 (APOEch). Remarkably, APOE is the main genetic risk factor for developing sporadic AD (SAD) and most of cerebral ApoE is produced by astroglia. Here, we characterized astrocyte properties related to reactivity, glutamate homeostasis, and structural integrity of the gliovascular unit (GVU), as factors that could underlie the pathogenesis or protection of AD. Specifically, through histological and 3D microscopy analyses of postmortem samples, we briefly describe the histopathology and cytoarchitecture of the frontal cortex of SAD, FAD, and APOEch, and demonstrate that, while astrodegeneration and vascular deterioration are prominent in SAD, FAD is characterized by hyperreactive-like glia, and APOEch displays the mildest astrocytic and vascular alterations despite having the highest burden of Aß. Notably, astroglial, gliovascular, and vascular disturbances, as well as brain cell death, correlate with the specific astrocytic phenotypes identified in each condition. This study provides new insights into the potential relevance of the gliovasculature in the development and protection of AD. To our knowledge, this is the first study assessing the components of the GVU in human samples of SAD, FAD, and APOEch.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Homocigoto , Mutación , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo
17.
Nat Commun ; 14(1): 5120, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612284

RESUMEN

Autosomal dominant Alzheimer's disease (ADAD) is genetically determined, but variability in age of symptom onset suggests additional factors may influence cognitive trajectories. Although apolipoprotein E (APOE) genotype and educational attainment both influence dementia onset in sporadic AD, evidence for these effects in ADAD is limited. To investigate the effects of APOE and educational attainment on age-related cognitive trajectories in ADAD, we analyzed data from 675 Presenilin-1 E280A mutation carriers and 594 non-carriers. Here we show that age-related cognitive decline is accelerated in ADAD mutation carriers who also have an APOE e4 allele compared to those who do not and delayed in mutation carriers who also have an APOE e2 allele compared to those who do not. Educational attainment is protective and moderates the effect of APOE on cognition. Despite ADAD mutation carriers being genetically determined to develop dementia, age-related cognitive decline may be influenced by other genetic and environmental factors.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteínas , Apolipoproteínas E/genética , Cognición , Escolaridad , Genotipo
18.
Nat Neurosci ; 26(12): 2104-2121, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957317

RESUMEN

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier. In this study, we sought to determine if the R136S mutation also protects against APOE4-driven effects in LOAD. We generated tauopathy mouse and human iPSC-derived neuron models carrying human APOE4 with the homozygous or heterozygous R136S mutation. We found that the homozygous R136S mutation rescued APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. The heterozygous R136S mutation partially protected against APOE4-driven neurodegeneration and neuroinflammation but not Tau pathology. Single-nucleus RNA sequencing revealed that the APOE4-R136S mutation increased disease-protective and diminished disease-associated cell populations in a gene dose-dependent manner. Thus, the APOE-R136S mutation protects against APOE4-driven AD pathologies, providing a target for therapeutic development against AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Mutación/genética , Enfermedades Neuroinflamatorias , Tauopatías/genética
19.
Nat Med ; 29(5): 1243-1252, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37188781

RESUMEN

We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia-Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia.


Asunto(s)
Enfermedad de Alzheimer , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Heterocigoto , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal
20.
Artículo en Inglés | MEDLINE | ID: mdl-35534207

RESUMEN

The Notch signaling pathway is a highly versatile and evolutionarily conserved mechanism with an important role in cell fate determination. Notch signaling plays a vital role in vascular development, regulating several fundamental processes such as angiogenesis, arterial/venous differentiation, and mural cell investment. Aberrant Notch signaling can result in severe vascular phenotypes as observed in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Alagille syndrome. It is known that vascular endothelial cells and mural cells interact to regulate vessel formation, cell maturation, and stability of the vascular network. Defective endothelial-mural cell interactions are a common phenotype in diseases characterized by impaired vascular integrity. Further refinement of the role of Notch signaling in the vascular junctions will be critical to attempts to modulate Notch in the context of human vascular disease. In this review, we aim to consolidate and summarize our current understanding of Notch signaling in the vascular endothelial and mural cells during development and in the adult vasculature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA