Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angiogenesis ; 26(3): 385-407, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36933174

RESUMEN

The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1-/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1-/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Hipoxia/metabolismo , Isquemia/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/genética , Proteínas Inmediatas-Precoces/metabolismo
2.
Circ Res ; 127(4): 466-482, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32404031

RESUMEN

RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Transportador de Glucosa de Tipo 1/fisiología , Neovascularización Fisiológica , Vasos Retinianos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Encéfalo/citología , Movimiento Celular , Proliferación Celular , Células Endoteliales/fisiología , Endotelio , Endotelio Vascular/fisiología , Metabolismo Energético , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Glucólisis , Humanos , Ratones , Retina/citología
3.
Cell Metab ; 33(9): 1793-1807.e9, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34358431

RESUMEN

Exercise is a powerful driver of physiological angiogenesis during adulthood, but the mechanisms of exercise-induced vascular expansion are poorly understood. We explored endothelial heterogeneity in skeletal muscle and identified two capillary muscle endothelial cell (mEC) populations that are characterized by differential expression of ATF3/4. Spatial mapping showed that ATF3/4+ mECs are enriched in red oxidative muscle areas while ATF3/4low ECs lie adjacent to white glycolytic fibers. In vitro and in vivo experiments revealed that red ATF3/4+ mECs are more angiogenic when compared with white ATF3/4low mECs. Mechanistically, ATF3/4 in mECs control genes involved in amino acid uptake and metabolism and metabolically prime red (ATF3/4+) mECs for angiogenesis. As a consequence, supplementation of non-essential amino acids and overexpression of ATF4 increased proliferation of white mECs. Finally, deleting Atf4 in ECs impaired exercise-induced angiogenesis. Our findings illustrate that spatial metabolic angiodiversity determines the angiogenic potential of muscle ECs.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Adulto , Células Endoteliales/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Patológica/metabolismo
4.
Neurol Genet ; 7(4): e608, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34250228

RESUMEN

OBJECTIVE: Our study investigated the presence of regional differences in hexanucleotide repeat number in postmortem brain tissues of 2 patients with X-linked dystonia-parkinsonism (XDP), a combined dystonia-parkinsonism syndrome modified by a (CCCTCT)n repeat within the causal SINE-VNTR-Alu retrotransposon insertion in the TAF1 gene. METHODS: Genomic DNA was extracted from blood and postmortem brain samples, including the basal ganglia and cortex from both patients and from the cerebellum, midbrain, and pituitary gland from 1 patient. Repeat sizing was performed using fragment analysis, small-pool PCR-based Southern blotting, and Oxford nanopore sequencing. RESULTS: The basal ganglia (p < 0.001) and cerebellum (p < 0.001) showed higher median repeat numbers and higher degrees of repeat instability compared with blood. CONCLUSIONS: Somatic repeat instability may predominate in brain regions selectively affected in XDP, thereby hinting at its potential role in disease manifestation and modification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA