Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cells Tissues Organs ; 193(1-2): 114-32, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21041998

RESUMEN

Epithelial to mesenchymal transition (EMT) plays a dual role in tumor progression. It enhances metastasis of tumor cells by increasing invasive capacity and promoting survival, and it decreases tumor cell sensitivity to epithelial cell-targeting agents such as epithelial growth factor receptor kinase inhibitors. In order to study EMT in tumor cells, we have characterized 3 new models of ligand-driven EMT: the CFPAC1 pancreatic tumor model and the H358 and H1650 lung tumor models. We identified a diverse set of ligands that drives EMT in these models. Hepatocyte growth factor and oncostatin M induced EMT in all models, while transforming growth factor-ß induced EMT in both lung models. We observed morphologic, marker and phenotypic changes in response to chronic ligand treatment. Interestingly, stimulation with 2 ligands resulted in more pronounced EMT compared with single-ligand treatment, demonstrating a spectrum of EMT states induced by parallel signaling, such as the JAK and PI3K pathways. The EMT changes observed in response to the ligand were reversed upon ligand withdrawal, demonstrating the 'metastable' nature of these models. To study the impact of EMT on cell morphology and invasion in a 3D setting, we cultured cells in a semisolid basement membrane extract. Upon stimulation with EMT ligands, the colonies exhibited changes to EMT markers and showed phenotypes ranging from modest differences in colony architecture (CFPAC1) to complex branching structures (H358, H1650). Collectively, these 3 models offer robust cell systems with which to study the roles that EMT plays in cancer progression.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Pulmonares/metabolismo , Oncostatina M/metabolismo , Neoplasias Pancreáticas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Western Blotting , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Técnica del Anticuerpo Fluorescente , Factor de Crecimiento de Hepatocito/genética , Humanos , Neoplasias Pulmonares/genética , Microscopía Confocal , Oncostatina M/genética , Neoplasias Pancreáticas/genética , Reacción en Cadena de la Polimerasa , Factor de Crecimiento Transformador beta/genética
2.
Mol Cell Proteomics ; 8(10): 2308-20, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19620624

RESUMEN

RhoA controls changes in cell morphology and invasion associated with cancer phenotypes. Cell lines derived from melanoma tumors at varying stages revealed that RhoA is selectively activated in cells of metastatic origin. We describe a functional proteomics strategy to identify proteins regulated by RhoA and report a previously uncharacterized human protein, named "mediator of RhoA-dependent invasion (MRDI)," that is induced in metastatic cells by constitutive RhoA activation and promotes cell invasion. In human melanomas, MRDI localization correlated with stage, showing nuclear localization in nevi and early stage tumors and cytoplasmic localization with plasma membrane accentuation in late stage tumors. Consistent with its role in promoting cell invasion, MRDI localized to cell protrusions and leading edge membranes in cultured cells and was required for cell motility, tyrosine phosphorylation of focal adhesion kinase, and modulation of actin stress fibers. Unexpectedly MRDI had enzymatic function as an isomerase that converts the S-adenosylmethionine catabolite 5-methylribose 1-phosphate into 5-methylribulose 1-phosphate. The enzymatic function of MRDI was required for methionine salvage from S-adenosylmethionine but distinct from its function in cell invasion. Thus, mechanisms used by signal transduction pathways to control cell movement have evolved from proteins with ancient function in amino acid metabolism.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Melanoma , Metionina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Isomerasas Aldosa-Cetosa/genética , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Activación Enzimática , Femenino , Humanos , Melanoma/enzimología , Melanoma/patología , Metionina/química , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Estructura Molecular , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteómica/métodos , Interferencia de ARN , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Transducción de Señal/fisiología , Trasplante Heterólogo , Proteína de Unión al GTP rhoA/genética
3.
Anticancer Res ; 32(2): 537-52, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22287743

RESUMEN

E-Cadherin and vimentin protein expression was assessed in late stage non-small cell lung cancer tumors from the placebo controlled clinical trial, NCIC-CTG BR.21, to determine if these markers had the potential to predict outcome of erlotinib therapy. E-Cadherin and vimentin protein expression levels were assessed in tumors from 95 patients, who were representative of the overall population, using semi-quantitative immunohistochemistry. The percentage of tumor cells with grades 0, 1, 2, or 3 membrane staining of E-cadherin and cytoplasmic staining of vimentin was measured. Three scoring methods and multiple cut-offs were explored to determine if these markers were able to divide patients into groups with different overall survival (OS). A cut-off point for E-cadherin of ≥40% tumor cells with staining of +2 and +3 and a cut-off for vimentin of ≥10% of tumors cell with any staining provided the optimal stratification. The OS hazard ratio (HR) for E-cadherin(+) versus E-cadherin(-) in the erlotinib-treated patients was 0.68 (0.35-1.33) compared with 1.48 (0.69-3.15) in the placebo patients and the OS (HR) for erlotinib versus placebo was 0.47 (0.26-0.88) in E-cadherin(+) patients compared with 1.12 (0.52-2.44) in the E-cadherin(-) patients. The OS (HR) for vimentin(+) versus vimentin(-) in the erlotinib-treated patients was 0.65 (0.31-1.38) compared to 2.32 (1.09-4.94) in the placebo-treated patients and the OS (HR) for erlotinib versus placebo was 0.26 (0.11-0.63) in vimentin(+) compared to 0.99 (0.55-1.76) in the vimentin(-) patients. Similar trends were observed for progression-free survival and response rate. E-Cadherin and vimentin are biomarkers worthy of additional study as predictive markers of outcome of erlotinib therapy.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Cadherinas/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Quinazolinas/uso terapéutico , Vimentina/biosíntesis , Adolescente , Adulto , Anciano , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Supervivencia sin Enfermedad , Clorhidrato de Erlotinib , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Adulto Joven
4.
Int J Biochem Cell Biol ; 43(2): 180-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20708092

RESUMEN

There is increasing evidence that p38 MAPK, which is classified as a stress-activated kinase, also participates in cell cycle regulation, functioning as a suppressor of cell proliferation and tumorigenesis. We conducted a study of p38 MAPK phosphorylation during liver regeneration in mice to determine whether p38 MAPK activation or inactivation may correlate with events that lead to DNA replication after partial hepatectomy (PH), and whether p38 MAPK activation may be required for hepatocyte DNA replication in vivo and in culture. We report that active p38 (Pi-p38 MAPK) is present in normal liver, is rapidly inactivated starting 30 min after PH, and is re-activated by 12h. Although levels of Pi-MKK 3/6, the upstream kinases that activate p38 MAPK increase after PH, the expression of the dual protein phosphatase 1 is also elevated, and may be responsible for Pi-p38 MAPK dephosphorylation after PH. Inactivation and re-activation of p38 MAPK inversely correlates with the stimulation of protein synthesis and translation pathways, as indicated by activation of p70S6 kinase, increases in the phosphorylation of initiation factor elF-4E and translational repressor, 4E-BP. The activity of a p38 MAPK downstream substrate, MAPKAPK2 (MK2), did not reflect the changing levels of Pi-p38 MAPK during liver regeneration. Pi-p38 MAPK may be involved in TNF-stimulated DNA replication of murine hepatocytes in culture, but is not necessary for hepatocyte DNA replication after PH. Our results suggest that p38 MAPK inactivation plays a permissible role in DNA replication during liver regeneration and is consistent with a role for p38 MAPK in the maintenance of hepatocyte cell cycle arrest in adult liver.


Asunto(s)
Regeneración Hepática , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Proteínas de Ciclo Celular/biosíntesis , Línea Celular , Proliferación Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Fosfatasa 1 de Especificidad Dual/biosíntesis , Fosfatasas de Especificidad Dual/biosíntesis , Activación Enzimática , Pruebas de Enzimas , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/cirugía , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células 3T3 NIH , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/farmacología , Transducción de Señal , Factores de Necrosis Tumoral/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Clin Exp Metastasis ; 28(2): 137-55, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21194007

RESUMEN

Epithelial-mesenchymal transition (EMT) is an important contributor to the invasion and metastasis of epithelial-derived cancers. While considerable effort has focused in the regulators involved in the transition process, we have focused on consequences of EMT to prosurvival signaling. Changes in distinct metastable and 'epigentically-fixed' EMT states were measured by correlation of protein, phosphoprotein, phosphopeptide and RNA transcript abundance. The assembly of 1167 modulated components into functional systems or machines simplified biological understanding and increased prediction confidence highlighting four functional groups: cell adhesion and migration, metabolism, transcription nodes and proliferation/survival networks. A coordinate metabolic reduction in a cluster of 17 free-radical stress pathway components was observed and correlated with reduced glycolytic and increased oxidative phosphorylation enzyme capacity, consistent with reduced cell cycling and reduced need for macromolecular biosynthesis in the mesenchymal state. An attenuation of EGFR autophosphorylation and a switch from autocrine to paracrine-competent EGFR signaling was implicated in the enablement of tumor cell chemotaxis. A similar attenuation of IGF1R, MET and RON signaling with EMT was observed. In contrast, EMT increased prosurvival autocrine IL11/IL6-JAK2-STAT signaling, autocrine fibronectin-integrin α5ß1 activation, autocrine Axl/Tyro3/PDGFR/FGFR RTK signaling and autocrine TGFßR signaling. A relatively uniform loss of polarity and cell-cell junction linkages to actin cytoskeleton and intermediate filaments was measured at a systems level. A more heterogeneous gain of ECM remodeling and associated with invasion and migration was observed. Correlation to stem cell, EMT, invasion and metastasis datasets revealed the greatest similarity with normal and cancerous breast stem cell populations, CD49f(hi)/EpCAM(-/lo) and CD44(hi)/CD24(lo), respectively.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Transducción de Señal , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Epiteliales/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Proteínas de Homeodominio/metabolismo , Humanos , Fosforilación , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
6.
Clin Exp Metastasis ; 28(7): 593-614, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21643654

RESUMEN

The progression of cancer from non-metastatic to metastatic is the critical transition in the course of the disease. The epithelial to mesenchymal transition (EMT) is a mechanism by which tumor cells acquire characteristics that improve metastatic efficiency. Targeting EMT processes in patients is therefore a potential strategy to block the transition to metastatic cancer and improve patient outcome. To develop models of EMT applicable to in vitro and in vivo settings, we engineered NCI-H358 non-small cell lung carcinoma cells to inducibly express three well-established drivers of EMT: activated transforming growth factor ß (aTGFß), Snail or Zeb1. We characterized the morphological, molecular and phenotypic changes induced by each of the drivers and compared the different end-states of EMT between the models. Both in vitro and in vivo, induction of the transgenes Snail and Zeb1 resulted in downregulation of epithelial markers and upregulation of mesenchymal markers, and reduced the ability of the cells to proliferate. Induced autocrine expression of aTGFß caused marker and phenotypic changes consistent with EMT, a modest effect on growth rate, and a shift to a more invasive phenotype. In vivo, this manifested as tumor cell infiltration of the surrounding mouse stromal tissue. Overall, Snail and Zeb1 were sufficient to induce EMT in the cells, but aTGFß induced a more complex EMT, in which changes in extracellular matrix remodeling components were pronounced.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Fenotipo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Transgenes , Trasplante Heterólogo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
7.
Science ; 320(5874): 365-9, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18420933

RESUMEN

Mechanisms by which Wnt pathways integrate the organization of receptors, organelles, and cytoskeletal proteins to confer cell polarity and directional cell movement are incompletely understood. We show that acute responses to Wnt5a involve recruitment of actin, myosin IIB, Frizzled 3, and melanoma cell adhesion molecule into an intracellular structure in a melanoma cell line. In the presence of a chemokine gradient, this Wnt-mediated receptor-actin-myosin polarity (W-RAMP) structure accumulates asymmetrically at the cell periphery, where it triggers membrane contractility and nuclear movement in the direction of membrane retraction. The process requires endosome trafficking, is associated with multivesicular bodies, and is regulated by Wnt5a through the small guanosine triphosphatases Rab4 and RhoB. Thus, cell-autonomous mechanisms allow Wnt5a to control cell orientation, polarity, and directional movement in response to positional cues from chemokine gradients.


Asunto(s)
Polaridad Celular , Melanoma/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Actinas/metabolismo , Animales , Antígeno CD146/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Quimiocina CXCL12/metabolismo , Quimiotaxis , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Melanoma/patología , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Miosina Tipo IIB no Muscular/metabolismo , Trasplante Heterólogo , Proteína Wnt-5a , Proteínas de Unión al GTP rab4/metabolismo , Proteína de Unión al GTP rhoB/metabolismo
8.
Mol Cell Biochem ; 268(1-2): 129-40, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15724446

RESUMEN

Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase (MAPK) have been used extensively in vitro and in vivo to investigate the role of p38 in physiological processes. As with other pharmacological inhibitors, non-specific targets of the p38 inhibitors have been reported. We have found that the protein kinase receptor interacting protein-2 (RIP2) is another target for the family of p38 inhibitors. The autophosphorylation of RIP2 was inhibited in vitro by the p38 inhibitors SB220025, SB203580 and PD169316 at concentrations comparable to those used to inhibit p38. We also identified two new in vitro substrates for RIP2, myelin basic protein and histone H3 with apparent Km values of 2.1 microM and 0.65 microM, respectively. The ability of RIP2 to phosphorylate these two substrates was sensitive to the p38 inhibitors as well. As was shown for p38alpha, a conserved threonine in the kinase domain of RIP2 is required for sensitivity to the inhibitors, indicating that the mechanism of inhibition of RIP2 is similar to that of p38. These results demonstrate that the pyridinyl imidazole inhibitors block RIP2 as well as p38 kinase activity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Línea Celular , Humanos , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína/fisiología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Especificidad por Sustrato , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
J Biol Chem ; 279(33): 34530-6, 2004 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-15199050

RESUMEN

Tumor necrosis factor (TNF) has multiple biological effects such as participating in inflammation, apoptosis, and cell proliferation, but the mechanisms of its effects on epithelial cell proliferation have not been examined in detail. At the early stages of liver regeneration, TNF functions as a priming agent for hepatocyte replication and increases the sensitivity of hepatocytes to growth factors such as transforming growth factor alpha (TGFalpha); however, the mechanisms by which TNF interacts with growth factors and enhances hepatocyte replication are not known. Using the AML-12 hepatocyte cell line, we show that TNF stimulates proliferation of these cells through transactivation of the epidermal growth factor receptor (EGFR). The transactivation mechanism involves the release of TGFalpha into the medium through activation of the metalloproteinase TNFalpha-converting enzyme (also known as ADAM 17). Binding of the ligand to EGFR initiates a mitogenic cascade through extracellular signal-regulated kinases 1 and 2 and the partial involvement of protein kinase B. TNF-induced release of TGFalpha and activation of EGFR signaling were inhibited by TNFalpha protease inhibitor-1, an agent that interferes with TNFalpha-converting enzyme activity. We suggest that TNF-induced transactivation of EGFR may provide an early signal for the entry of hepatocytes into the cell cycle and may integrate proliferative and survival pathways at the start of liver regeneration.


Asunto(s)
Receptores ErbB/metabolismo , Hepatocitos/metabolismo , Activación Transcripcional , Proteínas ADAM , Proteína ADAM17 , Animales , Western Blotting , Bromodesoxiuridina/farmacología , Tampones (Química) , División Celular , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Colorantes/farmacología , Medio de Cultivo Libre de Suero/metabolismo , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Humanos , Ligandos , Hígado/fisiología , Metaloendopeptidasas/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Pruebas de Precipitina , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Regeneración , Transducción de Señal , Timidina/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA