Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610411

RESUMEN

The constant monitoring and control of various health, infrastructure, and natural factors have led to the design and development of technological devices in a wide range of fields. This has resulted in the creation of different types of sensors that can be used to monitor and control different environments, such as fire, water, temperature, and movement, among others. These sensors detect anomalies in the input data to the system, allowing alerts to be generated for early risk detection. The advancement of artificial intelligence has led to improved sensor systems and networks, resulting in devices with better performance and more precise results by incorporating various features. The aim of this work is to conduct a bibliometric analysis using the PRISMA 2020 set to identify research trends in the development of machine learning applications in fiber optic sensors. This methodology facilitates the analysis of a dataset comprised of documents obtained from Scopus and Web of Science databases. It enables the evaluation of both the quantity and quality of publications in the study area based on specific criteria, such as trends, key concepts, and advances in concepts over time. The study found that deep learning techniques and fiber Bragg gratings have been extensively researched in infrastructure, with a focus on using fiber optic sensors for structural health monitoring in future research. One of the main limitations is the lack of research on the use of novel materials, such as graphite, for designing fiber optic sensors. One of the main limitations is the lack of research on the use of novel materials, such as graphite, for designing fiber optic sensors. This presents an opportunity for future studies.

2.
Molecules ; 29(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474641

RESUMEN

The catalytic properties of cytochrome c (Cc) have captured great interest in respect to mitochondrial physiology and apoptosis, and hold potential for novel enzymatic bioremediation systems. Nevertheless, its contribution to the metabolism of environmental toxicants remains unstudied. Human exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with impactful diseases, and animal models have unveiled concerning signs of PAHs' toxicity to mitochondria. In this work, a series of eight PAHs with ionization potentials between 7.2 and 8.1 eV were used to challenge the catalytic ability of Cc and to evaluate the effect of vesicles containing cardiolipin mimicking mitochondrial membranes activating the peroxidase activity of Cc. With moderate levels of H2O2 and at pH 7.0, Cc catalyzed the oxidation of toxic PAHs, such as benzo[a]pyrene, anthracene, and benzo[a]anthracene, and the cardiolipin-containing membranes clearly increased the PAH conversions. Our results also demonstrate for the first time that Cc and Cc-cardiolipin complexes efficiently transformed the PAH metabolites 2-hydroxynaphthalene and 1-hydroxypyrene. In comparison to horseradish peroxidase, Cc was shown to reach more potent oxidizing states and react with PAHs with ionization potentials up to 7.70 eV, including pyrene and acenaphthene. Spectral assays indicated that anthracene binds to Cc, and docking simulations proposed possible binding sites positioning anthracene for oxidation. The results give support to the participation of Cc in the metabolism of PAHs, especially in mitochondria, and encourage further investigation of the molecular interaction between PAHs and Cc.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Animales , Humanos , Hidrocarburos Policíclicos Aromáticos/química , Citocromos c , Cardiolipinas , Peróxido de Hidrógeno , Antracenos
3.
Clin Immunol ; 254: 109684, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451415

RESUMEN

BACKGROUND: SARS-CoV-2 infections have been associated with the onset of thyroid disorders like classic subacute thyroiditis (SAT) or atypical SAT upon severe COVID disease (COV-A-SAT). Little is known about thyroid anti-viral immune responses. OBJECTIVES: To define the role of T-cells in COV-A-SAT. METHODS: T-cells from COV-A-SAT patients were analyzed by multi-dimensional flow cytometry, UMAP and DiffusionMap dimensionality reduction and FlowSOM clustering. T-cells from COVID-naïve healthy donors, patients with autoimmune thyroiditis (ATD) and with SAT following COVID vaccination were analyzed as controls. T-cells were analyzed four and eight months post-infection in peripheral blood and in thyroid specimen obtained by ultrasound-guided fine needle aspiration. SARS-COV2-specific T-cells were identified by cytokine production induced by SARS-COV2-derived peptides and with COVID peptide-loaded HLA multimers after HLA haplotyping. RESULTS: COV-A-SAT was associated with HLA-DRB1*13 and HLA-B*57. COV-A-SAT patients contained activated Th1- and cytotoxic CD4+ and CD8+ effector cells four months post-infection, which acquired a quiescent memory phenotype after eight months. Anti-SARS-CoV-2-specific T-cell responses were readily detectable in peripheral blood four months post-infection, but were reduced after eight months. CD4+ and CD8+ tissue-resident memory cells (TRM) were present in the thyroid, and circulating CXCR3+T-cells identified as their putative precursors. SARS-CoV-2-specific T-cells were enriched in the thyroid, and acquired a TRM phenotype eight months post-infection. CONCLUSIONS: The association of COV-A-SAT with specific HLA haplotypes suggests a genetic predisposition and a key role for T-cells. COV-A-SAT is characterized by a prolonged systemic anti-viral effector T-cell response and the late generation of COVID-specific TRM in the thyroid target tissue.


Asunto(s)
COVID-19 , Glándula Tiroides , Humanos , SARS-CoV-2 , ARN Viral , Fenotipo , Anticuerpos
4.
Molecules ; 28(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894616

RESUMEN

Amyloid ß (Aß) oligomers are the most neurotoxic forms of Aß, and Aß(1-42) is the prevalent Aß peptide found in the amyloid plaques of Alzheimer's disease patients. Aß(25-35) is the shortest peptide that retains the toxicity of Aß(1-42). Aß oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aß(1-42) concentration range. Aß and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aß(1-42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aß(1-42). The formation of His6/Aß(1-42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aß(1-42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aß(1-42) and Aß(25-35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aß peptides toward selected cellular targets.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Histidina/química , Hexosaminidasa A , Calbindina 1 , Cobre/química , Fragmentos de Péptidos/química , Enfermedad de Alzheimer/metabolismo
5.
Molecules ; 28(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38067638

RESUMEN

Lipid membrane nanodomains or lipid rafts are 10-200 nm diameter size cholesterol- and sphingolipid-enriched domains of the plasma membrane, gathering many proteins with different roles. Isolation and characterization of plasma membrane proteins by differential centrifugation and proteomic studies have revealed a remarkable diversity of proteins in these domains. The limited size of the lipid membrane nanodomain challenges the simple possibility that all of them can coexist within the same lipid membrane domain. As caveolin-1, flotillin isoforms and gangliosides are currently used as neuronal lipid membrane nanodomain markers, we first analyzed the structural features of these components forming nanodomains at the plasma membrane since they are relevant for building supramolecular complexes constituted by these molecular signatures. Among the proteins associated with neuronal lipid membrane nanodomains, there are a large number of proteins that play major roles in calcium signaling, such as ionotropic and metabotropic receptors for neurotransmitters, calcium channels, and calcium pumps. This review highlights a large variation between the calcium signaling proteins that have been reported to be associated with isolated caveolin-1 and flotillin-lipid membrane nanodomains. Since these calcium signaling proteins are scattered in different locations of the neuronal plasma membrane, i.e., in presynapses, postsynapses, axonal or dendritic trees, or in the neuronal soma, our analysis suggests that different lipid membrane-domain subtypes should exist in neurons. Furthermore, we conclude that classification of lipid membrane domains by their content in calcium signaling proteins sheds light on the roles of these domains for neuronal activities that are dependent upon the intracellular calcium concentration. Some examples described in this review include the synaptic and metabolic activity, secretion of neurotransmitters and neuromodulators, neuronal excitability (long-term potentiation and long-term depression), axonal and dendritic growth but also neuronal cell survival and death.


Asunto(s)
Señalización del Calcio , Caveolina 1 , Caveolina 1/metabolismo , Calcio/metabolismo , Proteómica , Microdominios de Membrana/metabolismo , Neuronas/metabolismo , Gangliósidos , Neurotransmisores/metabolismo
6.
Crit Care Med ; 50(1): 81-92, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259446

RESUMEN

OBJECTIVES: To report the epidemiology, treatments, and outcomes of adult patients admitted to the ICU after cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. DESIGN: Retrospective cohort study. SETTING: Nine centers across the U.S. part of the chimeric antigen receptor-ICU initiative. PATIENTS: Adult patients treated with chimeric antigen receptor T-cell therapy who required ICU admission between November 2017 and May 2019. INTERVENTIONS: Demographics, toxicities, specific interventions, and outcomes were collected. RESULTS: One-hundred five patients treated with axicabtagene ciloleucel required ICU admission for cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome during the study period. At the time of ICU admission, the majority of patients had grade 3-4 toxicities (66.7%); 15.2% had grade 3-4 cytokine release syndrome and 64% grade 3-4 immune effector cell-associated neurotoxicity syndrome. During ICU stay, cytokine release syndrome was observed in 77.1% patients and immune effector cell-associated neurotoxicity syndrome in 84.8% of patients; 61.9% patients experienced both toxicities. Seventy-nine percent of patients developed greater than or equal to grade 3 toxicities during ICU stay, however, need for vasopressors (18.1%), mechanical ventilation (10.5%), and dialysis (2.9%) was uncommon. Immune Effector Cell-Associated Encephalopathy score less than 3 (69.7%), seizures (20.2%), status epilepticus (5.7%), motor deficits (12.4%), and cerebral edema (7.9%) were more prevalent. ICU mortality was 8.6%, with only three deaths related to cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Median overall survival time was 10.4 months (95% CI, 6.64-not available mo). Toxicity grade or organ support had no impact on overall survival; higher cumulative corticosteroid doses were associated to decreased overall and progression-free survival. CONCLUSIONS: This is the first study to describe a multicenter cohort of patients requiring ICU admission with cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T-cell therapy. Despite severe toxicities, organ support and in-hospital mortality were low in this patient population.


Asunto(s)
Productos Biológicos/toxicidad , Enfermedad Crítica , Síndrome de Liberación de Citoquinas/inducido químicamente , Inmunoterapia Adoptiva/efectos adversos , Síndromes de Neurotoxicidad/etiología , Receptores Quiméricos de Antígenos , Adulto , Anciano , Comorbilidad , Síndrome de Liberación de Citoquinas/mortalidad , Síndrome de Liberación de Citoquinas/terapia , Femenino , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Síndromes de Neurotoxicidad/mortalidad , Síndromes de Neurotoxicidad/terapia , Gravedad del Paciente , Estudios Retrospectivos , Factores Sociodemográficos , Estados Unidos
7.
Int J Behav Nutr Phys Act ; 19(1): 101, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941632

RESUMEN

BACKGROUND: Few studies have analyzed the associations between impulsivity and dietary patterns. Some of them have shown a cross-sectional inverse relationship between impulsivity and healthy diet scores, whereas others reported a positive association with unhealthy dietary assessments. We aimed to examine longitudinal associations of impulsivity trait with adherence to healthy and unhealthy dietary patterns in older participants at high risk of cardiovascular disease over 3 years of follow-up. METHODS: A 3-year prospective cohort analysis within the PREDIMED-Plus-Cognition study conducted in 4 PREDIMED-Plus study centers was performed. The PREDIMED-Plus study aimed to test the beneficial effect of a lifestyle intervention on the primary prevention of cardiovascular disease. The participants with overweight or obesity and metabolic syndrome included in the present study (n = 462; mean age of 65.3 years; 51.5% female) completed both the UPPS-P Impulsive Behavior Scale (range: 0-236 points) and the 143-item Food Frequency Questionnaire at baseline, 1-year and 3-years of follow-up. Ten diet scores assessing healthy and unhealthy dietary patterns were evaluated. Linear mixed models were performed adjusting by several confounders to study the longitudinal associations between impulsivity trait and adherence to dietary pattern scores over 3 years of follow-up (also assessing interactions by sex, age, and intervention group). RESULTS: Impulsivity were negatively associated with adherence to the Healthy Plant-Based [ß = -0.92 (95%CI -1.67, -0.16)], Mediterranean [ß = -0.43 (95%CI -0.79, -0.07)], Energy-Restricted Mediterranean [ß = -0.76 (95%CI -1.16, -0.37)], Alternative Healthy Eating Index [ß = -0.88 (95%CI -1.52, -0.23)], Portfolio [ß = -0.57 (95%CI -0.91, -0.22)], and DASH [ß = -0.50 (95%CI -0.79, -0.22)] diet scores over 3 years of follow-up, whereas impulsivity was positively related with adherence to the unhealthy Western diet [ß = 1.59 (95%CI 0.59, 2.58)] over time. An interaction by intervention group was found, with those participants in the intervention group with high impulsivity levels having lower adherence to several healthy dietary patterns. CONCLUSIONS: Heightened impulsivity was longitudinally associated with lower adherence to healthy dietary patterns and higher adherence to the Western diet over 3 years of follow-up. Furthermore, nutritional intervention programs should consider impulsivity as a relevant factor for the intervention success. TRIAL REGISTRATION: Name of registry: Effect of an energy-restricted Mediterranean diet, physical activity and behavioral intervention on the primary prevention of cardiovascular disease. TRIAL REGISTRATION NUMBER: ISRCTN 89,898,870. Date of registration: 05/28/2014.


Asunto(s)
Enfermedades Cardiovasculares , Dieta Mediterránea , Síndrome Metabólico , Anciano , Enfermedades Cardiovasculares/prevención & control , Estudios Transversales , Humanos , Conducta Impulsiva , Obesidad/terapia , Sobrepeso/terapia , Estudios Prospectivos
8.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36499524

RESUMEN

Caveolin-2 is a protein suitable for the study of interactions of caveolins with other proteins and lipids present in caveolar lipid rafts. Caveolin-2 has a lower tendency to associate with high molecular weight oligomers than caveolin-1, facilitating the study of its structural modulation upon association with other proteins or lipids. In this paper, we have successfully expressed and purified recombinant human caveolin-2 using E. coli. The structural changes of caveolin-2 upon interaction with a lipid bilayer of liposomes were characterized using bioinformatic prediction models, circular dichroism, differential scanning calorimetry, and fluorescence techniques. Our data support that caveolin-2 binds and alters cholesterol-rich domains in the membranes through a CARC domain, a type of cholesterol-interacting domain in its sequence. The far UV-CD spectra support that the purified protein keeps its folding properties but undergoes a change in its secondary structure in the presence of lipids that correlates with the acquisition of a more stable conformation, as shown by differential scanning calorimetry experiments. Fluorescence experiments using egg yolk lecithin large unilamellar vesicles loaded with 1,6-diphenylhexatriene confirmed that caveolin-2 adsorbs to the membrane but only penetrates the core of the phospholipid bilayer if vesicles are supplemented with 30% of cholesterol. Our study sheds light on the caveolin-2 interaction with lipids. In addition, we propose that purified recombinant caveolin-2 can provide a new tool to study protein-lipid interactions within caveolae.


Asunto(s)
Caveolina 1 , Escherichia coli , Humanos , Escherichia coli/metabolismo , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Caveolas/metabolismo , Colesterol/metabolismo , Microdominios de Membrana/metabolismo , Membrana Dobles de Lípidos/metabolismo
9.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216403

RESUMEN

Amyloid ß1-42 (Aß(1-42)) oligomers have been linked to the pathogenesis of Alzheimer's disease (AD). Intracellular calcium (Ca2+) homeostasis dysregulation with subsequent alterations of neuronal excitability has been proposed to mediate Aß neurotoxicity in AD. The Ca2+ binding proteins calmodulin (CaM) and calbindin-D28k, whose expression levels are lowered in human AD brains, have relevant roles in neuronal survival and activity. In previous works, we have shown that CaM has a high affinity for Aß(1-42) oligomers and extensively binds internalized Aß(1-42) in neurons. In this work, we have designed a hydrophobic peptide of 10 amino acid residues: VFAFAMAFML (amidated-C-terminus amino acid) mimicking the interacting domain of CaM with Aß (1-42), using a combined strategy based on the experimental results obtained for Aß(1-42) binding to CaM and in silico docking analysis. The increase in the fluorescence intensity of Aß(1-42) HiLyteTM-Fluor555 has been used to monitor the kinetics of complex formation with CaM and with calbindin-D28k. The complexation between nanomolar concentrations of Aß(1-42) and calbindin-D28k is also a novel finding reported in this work. We found that the synthetic peptide VFAFAMAFML (amidated-C-terminus amino acid) is a potent inhibitor of the formation of Aß(1-42):CaM and of Aß(1-42):calbindin-D28k complexes.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Calbindinas/metabolismo , Calmodulina/metabolismo , Enfermedad de Alzheimer/metabolismo , Aminoácidos/metabolismo , Calcio/metabolismo , Humanos , Neuronas/metabolismo
10.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615312

RESUMEN

Cytochrome b5 reductase (Cb5R) is a flavoprotein that participates in the reduction of multiple biological redox partners. Co-localization of this protein with nitric oxide sources has been observed in neurons. In addition, the generation of superoxide anion radical by Cb5R has been observed. A search for specific inhibitors of Cb5R to understand the role of this protein in these new functions has been initiated. Previous studies have shown the ability of different flavonoids to inhibit Cb5R. Anthocyanins are a subgroup of flavonoids responsible for most red and blue colors found in flowers and fruits. Although usually represented by the flavylium cation form, these species are only stable at rather acidic pH values (pH ≤ 1). At higher pH values, the flavylium cation is involved in a dynamic reaction network comprising different neutral species with the potential ability to inhibit the activities of Cb5R. This study aims to provide insights into the molecular mechanism of interaction between flavonoids and Cb5R using flavylium salts as dynamic inhibitors. The outcome of this study might lead to the design of improved specific enzyme inhibitors in the future.


Asunto(s)
Antocianinas , Sales (Química) , Humanos , Citocromo-B(5) Reductasa/química , Citocromo-B(5) Reductasa/metabolismo , Superóxidos , Flavonoides/farmacología , Cationes
11.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008543

RESUMEN

Membrane cytochrome b5 reductase is a pleiotropic oxidoreductase that uses primarily soluble reduced nicotinamide adenine dinucleotide (NADH) as an electron donor to reduce multiple biological acceptors localized in cellular membranes. Some of the biological acceptors of the reductase and coupled redox proteins might eventually transfer electrons to oxygen to form reactive oxygen species. Additionally, an inefficient electron transfer to redox acceptors can lead to electron uncoupling and superoxide anion formation by the reductase. Many efforts have been made to characterize the involved catalytic domains in the electron transfer from the reduced flavoprotein to its electron acceptors, such as cytochrome b5, through a detailed description of the flavin and NADH-binding sites. This information might help to understand better the processes and modifications involved in reactive oxygen formation by the cytochrome b5 reductase. Nevertheless, more than half a century since this enzyme was first purified, the one-electron transfer process toward potential electron acceptors of the reductase is still only partially understood. New advances in computational analysis of protein structures allow predicting the intramolecular protein dynamics, identifying potential functional sites, or evaluating the effects of microenvironment changes in protein structure and dynamics. We applied this approach to characterize further the roles of amino acid domains within cytochrome b5 reductase structure, part of the catalytic domain, and several sensors and structural domains involved in the interactions with cytochrome b5 and other electron acceptors. The computational analysis results allowed us to rationalize some of the available spectroscopic data regarding ligand-induced conformational changes leading to an increase in the flavin adenine dinucleotide (FAD) solvent-exposed surface, which has been previously correlated with the formation of complexes with electron acceptors.


Asunto(s)
Citocromo-B(5) Reductasa/metabolismo , Citocromos b5/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Transporte de Electrón/fisiología , Flavina-Adenina Dinucleótido/metabolismo , Humanos
12.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918863

RESUMEN

Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.


Asunto(s)
Susceptibilidad a Enfermedades , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia , Envejecimiento , Animales , Biomarcadores , Regulación de la Expresión Génica , Homeostasis , Humanos , Estilo de Vida , Especificidad de Órganos , Transducción de Señal , Ubiquitina/metabolismo
13.
Molecules ; 25(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167334

RESUMEN

Cancer is one of the highest prevalent diseases in humans. The chances of surviving cancer and its prognosis are very dependent on the affected tissue, body location, and stage at which the disease is diagnosed. Researchers and pharmaceutical companies worldwide are pursuing many attempts to look for compounds to treat this malignancy. Most of the current strategies to fight cancer implicate the use of compounds acting on DNA damage checkpoints, non-receptor tyrosine kinases activities, regulators of the hedgehog signaling pathways, and metabolic adaptations placed in cancer. In the last decade, the finding of a lipid peroxidation increase linked to 15-lipoxygenases isoform 1 (15-LOX-1) activity stimulation has been found in specific successful treatments against cancer. This discovery contrasts with the production of other lipid oxidation signatures generated by stimulation of other lipoxygenases such as 5-LOX and 12-LOX, and cyclooxygenase (COX-2) activities, which have been suggested as cancer biomarkers and which inhibitors present anti-tumoral and antiproliferative activities. These findings support the previously proposed role of lipid hydroperoxides and their metabolites as cancer cell mediators. Depletion or promotion of lipid peroxidation is generally related to a specific production source associated with a cancer stage or tissue in which cancer originates. This review highlights the potential therapeutical use of chemical derivatives to stimulate or block specific cellular routes to generate lipid hydroperoxides to treat this disease.


Asunto(s)
Araquidonato 12-Lipooxigenasa/química , Araquidonato 15-Lipooxigenasa/química , Ciclooxigenasa 2/química , Hierro/química , Peroxidación de Lípido , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Daño del ADN , Ferroptosis , Humanos , Peróxido de Hidrógeno/química , Concentración 50 Inhibidora , Cinética , Peróxidos Lipídicos/química , NAD(P)H Deshidrogenasa (Quinona)/química , Nanopartículas/química , Transducción de Señal
14.
J Biol Inorg Chem ; 24(3): 317-330, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30838452

RESUMEN

Recently, we observed that at extreme alkaline pH, cytochrome b5 (Cb5) acquires a peroxidase-like activity upon formation of a low spin hemichrome associated with a non-native state. A functional characterization of Cb5, in a wide pH range, shows that oxygenase/peroxidase activities are stimulated in alkaline media, and a correlation between tyrosine ionization and the attained enzymatic activities was noticed, associated with an altered heme spin state, when compared to acidic pH values at which the heme group is released. In these conditions, a competitive assay between imidazole binding and Cb5 endogenous heme ligands revealed the appearance of a binding site for this exogenous ligand that promotes a heme group exposure to the solvent upon ligation. Our results shed light on the mechanism behind Cb5 oxygenase/peroxidase activity stimulation in alkaline media and reveal a role of tyrosinate anion enhancing Cb5 enzymatic activities on the distorted protein before maximum protein unfolding.


Asunto(s)
Citocromos b5/química , Hemo/química , Oxigenasas/química , Peroxidasas/química , Tirosina/química , Dominio Catalítico , Citocromos b5/metabolismo , Hemo/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Imidazoles/química , Imidazoles/metabolismo , Ligandos , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Oxigenasas/metabolismo , Peroxidasas/metabolismo , Unión Proteica
15.
Biochim Biophys Acta Bioenerg ; 1859(2): 78-87, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29111436

RESUMEN

Cytochrome b5 is the main electron acceptor of cytochrome b5 reductase. The interacting domain between both human proteins has been unidentified up to date and very little is known about its redox properties modulation upon complex formation. In this article, we characterized the protein/protein interacting interface by solution NMR and molecular docking. In addition, upon complex formation, we measured an increase of cytochrome b5 reductase flavin autofluorescence that was dependent upon the presence of cytochrome b5. Data analysis of these results allowed us to calculate a dissociation constant value between proteins of 0.5±0.1µM and a 1:1 stoichiometry for the complex formation. In addition, a 30mV negative shift of cytochrome b5 reductase redox potential in presence of cytochrome b5 was also measured. These experiments suggest that the FAD group of cytochrome b5 reductase increase its solvent exposition upon complex formation promoting an efficient electron transfer between the proteins.


Asunto(s)
Citocromo-B(5) Reductasa/química , Citocromos b5/química , Flavina-Adenina Dinucleótido/química , Simulación del Acoplamiento Molecular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Flavina-Adenina Dinucleótido/genética , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Dominios Proteicos
16.
Biochim Biophys Acta Biomembr ; 1860(5): 1057-1068, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29317202

RESUMEN

The interaction between cardiolipin (CL) and cytochrome c (cyt-c) results in a gain of function of peroxidase activity by cyt-c. Despite intensive research, disagreements on nature and molecular details of this interaction remain. In particular, it is still not known how the interaction triggers the onset of apoptosis. Enzymatic characterization of peroxidase activity has highlighted the need for a critical threshold concentration of CL, a finding of profound physiological relevance in vivo. Using solution NMR, fluorescence spectroscopy, and in silico modeling approaches we here confirm that full binding of cyt-c to the membrane requires a CL:cyt-c threshold ratio of 5:1. Among three binding sites, the simultaneous binding of two sites, at two opposing sides of the heme, provides a mechanism to open the heme crevice to substrates. This results in "productive binding" in which cyt-c then sequesters CL, inducing curvature in the membrane. Membrane perturbation along with lipid peroxidation, due to interactions of heme/CL acyl chains, initiates the next step in the apoptotic pathway of making the membrane leaky. The third CL binding site while allowing interaction with the membrane, does not cluster CL or induce subsequent events, making this interaction "unproductive".


Asunto(s)
Cardiolipinas/metabolismo , Citocromos c/metabolismo , Membranas/metabolismo , Peroxidasa/metabolismo , Secuencia de Aminoácidos , Animales , Cardiolipinas/química , Citocromos c/química , Citocromos c/genética , Caballos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Peroxidasa/química , Peroxidasa/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Relación Estructura-Actividad , Liposomas Unilamelares
17.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 373-378, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28958890

RESUMEN

In alkaline media (pH12) a catalytic peroxidase activity of cytochrome b5 was found associated to a different conformational state. Upon incubation at this pH, cytochrome b5 electronic absorption spectrum was altered, with disappearance of characteristic bands of cytochrome b5 at pH7.0. The appearance of new electronic absorption bands and EPR measurements support the formation of a cytochrome b5 class B hemichrome with an acquired ability to bind polar ligands. This hemichrome is characterized by a negative formal redox potential and the same folding properties than cytochrome b5 at pH7. The acquired peroxidase-like activity of cytochrome b5 found at pH12, driven by a hemichrome formation, suggests a role of this protein in peroxidation products propagation.


Asunto(s)
Citocromos b5/química , Citocromos b5/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Oxidación-Reducción
19.
J Neurochem ; 138(4): 624-39, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27273428

RESUMEN

Cyclin-dependent kinase 5 (CDK5) plays important roles in synaptic function. Its unregulated over-activation has been, however, associated with neurodegeneration in Alzheimer's disease. Our previous studies revealed that CDK5 silencing ameliorates tauopathy and spatial memory impairment in the 3xTgAD mouse model. However, how CDK5 targeting affects synaptic adhesion proteins, such as those involved in the cadherin/catenin system, during learning and memory processes is not completely understood. In this study, we detected reduced expression of p120 catenin (p120 ctn), N-cadherin, and ß-catenin in the brain of human Alzheimer's disease patients, in addition to a reduced PSD95 and GluN2B protein levels in a 3xTgAD mouse model. Such decrease in synaptic proteins was recovered by CDK5 silencing in mice leading to a better learning and memory performance. Additionally, CDK5 inhibition or knockout increased p120 ctn levels. Moreover, in a glutamate-induced excitotoxicity model, CDK5 silencing-induced neuroprotection depended on p120 ctn. Together, those findings suggest that p120 ctn plays an important role in the neuronal dysfunction of Alzheimer's disease models and contributes to CDK5 silencing-induced neuroprotection and improvement of memory function. p120ctn is part of the synaptic adhesion molecular complex N-cadh/p120ctn/B-ctn/PSD95, and it has a pivotal role in cell adhesion stabilization and dendritic spine modulation. Our data show that synaptic adhesion complex is affected in AD human brains and in AD models. This complex is recovered by the silencing of CDK5, preventing memory dysfunction in an AD mice model and contributing to the neuroprotection in a depend-mode of p120ctn.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Cateninas/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Neuroprotección/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fosfoproteínas/metabolismo , Catenina delta
20.
J Neurosci Res ; 93(8): 1258-66, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25711385

RESUMEN

Inappropriate activation of cyclin-dependent kinase 5 (CDK5) resulting from proteolytic release of the activator fragment p25 from the membrane contributes to the formation of neurofibrillary tangles, ß-amyloid (ßA) aggregation, and chronic neurodegeneration. At 18 months of age, 3× Tg-AD mice were sacrificed after either 3 weeks (short term) or 1 year (long term) of CDK5 knockdown. In short-term-treated animals, CDK5 knockdown reversed ßA aggregation in the hippocampi via inhibitory phosphorylation of glycogen synthase kinase 3ß Ser9 and activation of phosphatase PP2A. In long-term-treated animals, CDK5 knockdown induced a persistent reduction in CDK5 and prevented ßA aggregation, but the effect on amyloid precursor protein processing was reduced, suggesting that yearly booster therapy would be required. These findings further validate CDK5 as a target for preventing or blocking amyloidosis in older transgenic mice.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Marcación de Gen/métodos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Agregación Patológica de Proteínas/prevención & control , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Ratones , Ratones Transgénicos , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA