Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 140(5): 1674-1685, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29320850

RESUMEN

A series of f-block chromates, CsM(CrO4)2 (M = La, Pr, Nd, Sm, Eu; Am), were prepared revealing notable differences between the AmIII derivatives and their lanthanide analogs. While all compounds form similar layered structures, the americium compound exhibits polymorphism and adopts both a structure isomorphous with the early lanthanides as well as one that possesses lower symmetry. Both polymorphs are dark red and possess band gaps that are smaller than the LnIII compounds. In order to probe the origin of these differences, the electronic structure of α-CsSm(CrO4)2, α-CsEu(CrO4)2, and α-CsAm(CrO4)2 were studied using both a molecular cluster approach featuring hybrid density functional theory and QTAIM analysis and by the periodic LDA+GA and LDA+DMFT methods. Notably, the covalent contributions to bonding by the f orbitals were found to be more than twice as large in the AmIII chromate than in the SmIII and EuIII compounds, and even larger in magnitude than the Am-5f spin-orbit splitting in this system. Our analysis indicates also that the Am-O covalency in α-CsAm(CrO4)2 is driven by the degeneracy of the 5f and 2p orbitals, and not by orbital overlap.

2.
J Am Chem Soc ; 139(38): 13361-13375, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28817775

RESUMEN

The reaction of 249Bk(OH)4 with iodate under hydrothermal conditions results in the formation of Bk(IO3)3 as the major product with trace amounts of Bk(IO3)4 also crystallizing from the reaction mixture. The structure of Bk(IO3)3 consists of nine-coordinate BkIII cations that are bridged by iodate anions to yield layers that are isomorphous with those found for AmIII, CfIII, and with lanthanides that possess similar ionic radii. Bk(IO3)4 was expected to adopt the same structure as M(IO3)4 (M = Ce, Np, Pu), but instead parallels the structural chemistry of the smaller ZrIV cation. BkIII-O and BkIV-O bond lengths are shorter than anticipated and provide further support for a postcurium break in the actinide series. Photoluminescence and absorption spectra collected from single crystals of Bk(IO3)4 show evidence for doping with BkIII in these crystals. In addition to luminescence from BkIII in the Bk(IO3)4 crystals, a broad-band absorption feature is initially present that is similar to features observed in systems with intervalence charge transfer. However, the high-specific activity of 249Bk (t1/2 = 320 d) causes oxidation of BkIII and only BkIV is present after a few days with concomitant loss of both the BkIII luminescence and the broadband feature. The electronic structure of Bk(IO3)3 and Bk(IO3)4 were examined using a range of computational methods that include density functional theory both on clusters and on periodic structures, relativistic ab initio wave function calculations that incorporate spin-orbit coupling (CASSCF), and by a full-model Hamiltonian with spin-orbit coupling and Slater-Condon parameters (CONDON). Some of these methods provide evidence for an asymmetric ground state present in BkIV that does not strictly adhere to Russel-Saunders coupling and Hund's Rule even though it possesses a half-filled 5f 7 shell. Multiple factors contribute to the asymmetry that include 5f electrons being present in microstates that are not solely spin up, spin-orbit coupling induced mixing of low-lying excited states with the ground state, and covalency in the BkIV-O bonds that distributes the 5f electrons onto the ligands. These factors are absent or diminished in other f7 ions such as GdIII or CmIII.

3.
Inorg Chem ; 55(9): 4373-80, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27070401

RESUMEN

The reaction of Ce(III) or Pu(III) with 1,10-phenanthroline-2,9-dicarboxylic acid (PDAH2) results in the formation of new f-element coordination complexes. In the case of cerium, Ce(PDA)(H2O)2Cl·H2O (1) or [Ce(PDAH)(PDA)]2[Ce(PDAH)(PDA)] (2) was isolated depending on the Ce/ligand ratio in the reaction. The structure of 2 is composed of two distinct substructures that are constructed from the same monomer. This monomer is composed of a Ce(III) cation bound by one PDA(2-) dianionic ligand and one PDAH(-) monoanionic ligand, both of which are tetradentate. Bridging by the carboxylate moieties leads to either [Ce(PDAH)(PDA)]2 dimers or [Ce(PDAH)(PDA)]1∞ helical chains. For plutonium, Pu(PDA)2 (3) was the only product isolated regardless of the Pu/ligand ratio employed in the reaction. During the reaction of plutonium with PDAH2, Pu(III) is oxidized to Pu(IV), generating 3. This assignment is consistent with structural metrics and the optical absorption spectrum. Ambiguity in the assignment of the oxidation state of cerium in 1 and 2 from UV-vis-near-IR spectra invoked the use of Ce L3,2-edge X-ray absorption near-edge spectroscopy, magnetic susceptibility, and heat capacity measurements. These experiments support the assignment of Ce(III) in both compounds. The bond distances and coordination numbers are also consistent with these assignments. 3 contains 8-coordinate Pu(IV), whereas the cerium centers in 1 and 2 are 9- and/or 10-coordinate, which correlates with the increased size of Ce(III) versus Pu(IV). Taken together, these data provide an example of a system where the differences in the redox behavior between these f elements creates more complex chemistry with cerium than with plutonium.

4.
Inorg Chem ; 54(23): 11399-404, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26562586

RESUMEN

The reaction of (248)CmCl3 with excess 2,6-pyridinedicarboxylic acid (DPA) under mild solvothermal conditions results in crystallization of the tris-chelate complex Cm(HDPA)3 · H2O. Approximately half of the curium remains in solution at the end of this process, and evaporation of the mother liquor results in crystallization of the bis-chelate complex [Cm(HDPA)(H2DPA)(H2O)2Cl]Cl·2H2O. (248)Cm is the daughter of the α decay of (252)Cf and is extracted in high purity from this parent. However, trace amounts of (249,250,251)Cf are still present in all samples of (248)Cm. During the crystallization of Cm(HDPA)3 · H2O and [Cm(HDPA)(H2DPA)(H2O)2Cl]Cl · 2H2O, californium(III) spontaneously separates itself from the curium complexes and is found doped within crystals of DPA in the form of Cf(HDPA)3. These results add to the growing body of evidence that the chemistry of californium is fundamentally different from that of earlier actinides.

5.
Science ; 353(6302)2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27563098

RESUMEN

Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f(7) configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium's only available isotope, (249)Bk, has hindered in-depth studies of the element's coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison. We demonstrate that berkelium's complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium's multiconfigurational ground state.

6.
Nat Commun ; 6: 6827, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25880116

RESUMEN

A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, and show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. The metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA