Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36839656

RESUMEN

Chronic wound treatment accounts for a substantial percentage of the medical expenses worldwide. Improving and developing novel wound care systems can potentially help to handle this problem. Wound dressings loaded with antiseptics may be an important tool for wound care, as they inhibit bacterial growth at the wound site. The goal of the present work was to investigate the potential of using casein hydrogel dressings loaded with two antiseptic drugs, Octiset® or polyhexanide, to treat chronic wounds. Casein-based hydrogels are inexpensive and have several properties that make them suitable for biomedical applications. Two types of casein were used: casein sodium salt and acid casein, with the formulations being labelled CS and C, respectively. The hydrogels were characterised with respect to their physical properties (swelling capacity, water content, morphology, mechanical resistance, and stability), before and after sterilisation, and they showed adequate values for the intended application. The hydrogels of both formulations were able to sustain controlled drug-release for, at least, 48 h. They were demonstrated to be non-irritant, highly haemocompatible, and non-cytotoxic, and revealed good antimicrobial properties against Staphylococcus aureus and Pseudomonas aeruginosa. Steam-heat sterilisation did not compromise the material's properties. The in vivo performance of C hydrogel loaded with Octiset® was evaluated in a case study with a dog. The efficient recovery of the wounds confirms its potential as an alternative for wound treatment. To our knowledge, this is the first time that wound dressings loaded with Octiset®, one of the most efficient drugs for wound treatment, were prepared and tested.

2.
Vaccines (Basel) ; 10(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35334987

RESUMEN

The recent emergence of a new myxoma virus capable of causing disease in the Iberian hare (Lepus granatensis) has resulted in numerous outbreaks with high mortality leading to the reduction, or even the disappearance, of many local populations of this wild species in the Iberian Peninsula. Currently, the available vaccines that prevent myxomatosis in domestic rabbits caused by classic strains of myxoma virus have not been assessed for use in Iberian hares. The main objective of this study was to evaluate the efficacy of commercial rabbit vaccines in Iberian hares and wild rabbits against the natural recombinant myxoma virus (ha-MYXV), bearing in mind its application in specific scenarios where capture is possible, such as genetic reserves. The study used a limited number of animals (pilot study), 15 Iberian hares and 10 wild rabbits. Hares were vaccinated with Mixohipra-FSA vaccine (Hipra) and Mixohipra-H vaccine (Hipra) using two different doses, and rabbits were vaccinated with the Mixohipra-H vaccine or the Nobivac Myxo-RHD PLUS (MSD Animal Health) using the recommended doses for domestic rabbits. After the vaccination trials, the animals were challenged with a wild type strain of ha-MYXV. The results showed that no protection to ha-MYXV challenge was afforded when a commercial dose of Mixohipra-FSA or Mixohipra-H vaccine was used in hares. However, the application of a higher dose of Mixohipra-FSA vaccine may induce protection and could possibly be used to counteract the accelerated decrease of wild hare populations due to ha-MYXV emergence. The two commercial vaccines (Mixohipra-H and Nobivac Myxo-RHD PLUS) tested in wild rabbits were fully protective against ha-MYXV infection. This knowledge gives more insights into ha-MYXV management in hares and rabbits and emphasises the importance of developing a vaccine capable of protecting wild populations of Iberian hare and wild rabbit towards MYXV and ha-MYXV strains.

3.
Biofabrication ; 6(2): 025005, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24658159

RESUMEN

Fabrication of customized implants based on patient bone defect characteristics is required for successful clinical application of bone tissue engineering. Recently a new surgical procedure, tibial tuberosity advancement (TTA), has been used to treat cranial cruciate ligament (CrCL) deficient stifle joints in dogs, which involves an osteotomy and the use of substitutes to restore the bone. However, limitations in the use of non-biodegradable implants have been reported. To overcome these limitations, this study presents the development of a bioceramic customized cage to treat a large domestic dog assigned for TTA treatment. A cage was designed using a suitable topology optimization methodology in order to maximize its permeability whilst maintaining the structural integrity, and was manufactured using low temperature 3D printing and implanted in a dog. The cage material and structure was adequately characterized prior to implantation and the in vivo response was carefully monitored regarding the biological response and patient limb function. The manufacturing process resulted in a cage composed of brushite, monetite and tricalcium phosphate, and a highly permeable porous morphology. An overall porosity of 59.2% was achieved by the combination of a microporosity of approximately 40% and a designed interconnected macropore network with pore sizes of 845 µm. The mechanical properties were in the range of the trabecular bone although limitations in the cage's reliability and capacity to absorb energy were identified. The dog's limb function was completely restored without patient lameness or any adverse complications and also the local biocompatibility and osteoconductivity were improved. Based on these observations it was possible to conclude that the successful design, fabrication and application of a customized cage for a dog CrCL treatment using a modified TTA technique is a promising method for the future fabrication of patient-specific bone implants, although clinical trials are required.


Asunto(s)
Ligamento Cruzado Anterior/cirugía , Sustitutos de Huesos/uso terapéutico , Impresión Tridimensional , Prótesis e Implantes/veterinaria , Tibia/cirugía , Animales , Fenómenos Biomecánicos , Fosfatos de Calcio/uso terapéutico , Enfermedades de los Perros/cirugía , Perros , Femenino , Rodilla de Cuadrúpedos/cirugía , Andamios del Tejido/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA