Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Cell ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321213

RESUMEN

The cytochrome b559 heterodimer is a conserved component of photosystem II whose physiological role in photosynthetic electron transfer is enigmatic. A particularly puzzling aspect of cytochrome b559 has been its presence in etiolated seedlings, where photosystem II is absent. Whether or not the cytochrome has a specific function in etioplasts is unknown. Here, we have attempted to address the function of cytochrome b559 by generating transplastomic tobacco (Nicotiana tabacum) plants that overexpress psbE and psbF, the plastid genes encoding the two cytochrome b559 apoproteins. We show that strong overaccumulation of the PsbE apoprotein can be achieved in etioplasts by suitable manipulations of the promoter and the translation signals, while the cytochrome b559 level is only moderately elevated. The surplus PsbE protein causes striking ultrastructural alterations in etioplasts; most notably, it causes a condensed prolamellar body and a massive proliferation of prothylakoids, with multiple membrane layers coiled into spiral-like structures. Analysis of plastid lipids revealed that increased PsbE biosynthesis strongly stimulated plastid lipid biosynthesis, suggesting that membrane protein abundance controls prothylakoid membrane biogenesis. Our data provide evidence for a structural role of PsbE in prolamellar body formation and prothylakoid biogenesis, and indicate that thylakoid membrane protein abundance regulates lipid biosynthesis in etioplasts.

2.
J Exp Bot ; 72(7): 2544-2569, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33484250

RESUMEN

Carotenoids are important isoprenoids produced in the plastids of photosynthetic organisms that play key roles in photoprotection and antioxidative processes. ß-Carotene is generated from lycopene by lycopene ß-cyclase (LCYB). Previously, we demonstrated that the introduction of the Daucus carota (carrot) DcLCYB1 gene into tobacco (cv. Xanthi) resulted in increased levels of abscisic acid (ABA) and especially gibberellins (GAs), resulting in increased plant yield. In order to understand this phenomenon prior to exporting this genetic strategy to crops, we generated tobacco (Nicotiana tabacum cv. Petit Havana) mutants that exhibited a wide range of LCYB expression. Transplastomic plants expressing DcLCYB1 at high levels showed a wild-type-like growth, even though their pigment content was increased and their leaf GA1 content was reduced. RNA interference (RNAi) NtLCYB lines showed different reductions in NtLCYB transcript abundance, correlating with reduced pigment content and plant variegation. Photosynthesis (leaf absorptance, Fv/Fm, and light-saturated capacity of linear electron transport) and plant growth were impaired. Remarkably, drastic changes in phytohormone content also occurred in the RNAi lines. However, external application of phytohormones was not sufficient to rescue these phenotypes, suggesting that altered photosynthetic efficiency might be another important factor explaining their reduced biomass. These results show that LCYB expression influences plant biomass by different mechanisms and suggests thresholds for LCYB expression levels that might be beneficial or detrimental for plant growth.


Asunto(s)
Liasas Intramoleculares , Nicotiana , Carotenoides , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
3.
Plant Physiol ; 180(1): 654-681, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30862726

RESUMEN

Upon exposure to light, plant cells quickly acquire photosynthetic competence by converting pale etioplasts into green chloroplasts. This developmental transition involves the de novo biogenesis of the thylakoid system and requires reprogramming of metabolism and gene expression. Etioplast-to-chloroplast differentiation involves massive changes in plastid ultrastructure, but how these changes are connected to specific changes in physiology, metabolism, and expression of the plastid and nuclear genomes is poorly understood. Here, we describe a new experimental system in the dicotyledonous model plant tobacco (Nicotiana tabacum) that allows us to study the leaf deetiolation process at the systems level. We have determined the accumulation kinetics of photosynthetic complexes, pigments, lipids, and soluble metabolites and recorded the dynamic changes in plastid ultrastructure and in the nuclear and plastid transcriptomes. Our data describe the greening process at high temporal resolution, resolve distinct genetic and metabolic phases during deetiolation, and reveal numerous candidate genes that may be involved in light-induced chloroplast development and thylakoid biogenesis.


Asunto(s)
Nicotiana/citología , Hojas de la Planta/citología , Hojas de la Planta/fisiología , Biología de Sistemas/métodos , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Núcleo Celular/genética , Cloroplastos , Genoma de Plastidios , Luz , Metabolismo de los Lípidos , Microscopía Electrónica de Transmisión , Fotosíntesis , Plastidios/genética , Nicotiana/fisiología , Transcriptoma , Triglicéridos/metabolismo
4.
J Exp Bot ; 71(4): 1215-1225, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31854450

RESUMEN

The state of etiolation is generally defined by the presence of non-green plastids (etioplasts) in plant tissues that would normally contain chloroplasts. In the commonly used dark-grown seedling system, etiolation is coupled with a type of growth called skotomorphogenesis. Upon illumination, de-etiolation occurs, marked by the transition from etioplast to chloroplast, and, at the seedling level, a switch to photomorphogenic growth. Etiolation and de-etiolation systems are therefore important for understanding both the acquisition of photosynthetic capacity during chloroplast biogenesis and plant responses to light-the most relevant signal in the life and growth of the organism. In this review, we discuss recent discoveries (within the past 2-3 years) in the field of etiolation and de-etiolation, with a particular focus on post-transcriptional processes and ultrastructural changes. We further discuss ambiguities in definitions of the term 'etiolation', and benefits and biases of common etiolation/de-etiolation systems. Finally, we raise several open questions and future research possibilities.


Asunto(s)
Etiolado , Regulación de la Expresión Génica de las Plantas , Cloroplastos , Oscuridad , Luz , Plantones
5.
J Exp Bot ; 69(15): 3759-3771, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29757407

RESUMEN

Roots and root-released organic anions play important roles in uptake of phosphorus (P), an essential macronutrient for food production. Oat, ranking sixth in the world's cereal production, contains valuable nutritional compounds and can withstand poor soil conditions. Our aim was to investigate root transcriptional and metabolic responses of oat grown under P-deficient and P-sufficient conditions. We conducted a hydroponic experiment and measured root morphology and organic anion exudation, and analysed changes in the transcriptome and metabolome. Oat roots showed enhanced citrate and malate exudation after 4 weeks of P deficiency. After 10 d of P deficiency, we identified 9371 differentially expressed transcripts with a 2-fold or greater change (P<0.05): 48 sequences predicted to be involved in organic anion biosynthesis and efflux were consistently up-regulated; 24 up-regulated transcripts in oat were also found to be up-regulated upon P starvation in rice and wheat under similar conditions. Phosphorylated metabolites (i.e. glucose-6-phosphate, myo-inositol phosphate) were reduced dramatically, while citrate and malate, some sugars and amino acids increased slightly in P-deficient oat roots. Our data are consistent with a strategy of increased organic anion efflux and a shift in primary metabolism in response to P deficiency in oat.


Asunto(s)
Avena/genética , Metaboloma , Fósforo/deficiencia , Transcriptoma , Aniones/metabolismo , Avena/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
8.
Plant J ; 78(1): 146-56, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24479654

RESUMEN

Stimulus-specific calcium (Ca(2+) ) signals have crucial functions in developmental processes in many organisms, and are deciphered by various Ca(2+) -binding proteins. In Arabidopsis thaliana, a signaling network consisting of calcineurin B-like (CBL) protein calcium sensors and CBL-interacting protein kinases (CIPKs) has been shown to fulfil pivotal functions at the plasma membrane in regulating ion fluxes and abiotic stress responses. However, the role of tonoplast-localized CBL proteins and especially their function in regulating developmental programs remains largely unknown. In this study, we analyzed single and double mutants of the closely related tonoplast-localized calcium sensors CBL2 and CBL3, which show either reduction of function (rf) or complete loss of function (lf). While single cbl2 or cbl3 mutants did not display discernable phenotypes, cbl2/cbl3 mutants exhibited defects in vegetative growth and were severely impaired in seed development and morphology. Seeds of the cbl2/3rf mutant were smaller in size and exhibited reduced weight and fatty acid content compared to wild-type, but accumulation of sucrose was not altered. Moreover, accumulation of inositol hexakisphosphate (InsP6 ), the major storage form of phosphorus in seeds, was significantly reduced in mutant seeds. In addition, complete loss of CBL2 and CBL3 function in cbl2/3lf resulted in a high frequency of severe defects in embryonic development. Together, our findings reveal a crucial function of Ca(2+) -controlled processes at the vacuolar membrane as determinants of seed yield and size, and demonstrate the importance of vacuolar CBL calcium sensors for plant embryogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Arabidopsis/embriología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Biomasa , Calcineurina/genética , Calcineurina/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Mutación , Plantas Modificadas Genéticamente , Semillas/embriología , Semillas/fisiología , Vacuolas/metabolismo
10.
Nat Commun ; 13(1): 4045, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831297

RESUMEN

The conversion of light energy to chemical energy by photosynthesis requires the concerted action of large protein complexes in the thylakoid membrane. Recent work has provided fundamental insights into the three-dimensional structure of these complexes, but how they are assembled from hundreds of parts remains poorly understood. Particularly little is known about the biogenesis of the cytochrome b6f complex (Cytb6f), the redox-coupling complex that interconnects the two photosystems. Here we report the identification of a factor that guides the assembly of Cytb6f in thylakoids of chloroplasts. The protein, DE-ETIOLATION-INDUCED PROTEIN 1 (DEIP1), resides in the thylakoid membrane and is essential for photoautotrophic growth. Knock-out mutants show a specific loss of Cytb6f, and are defective in complex assembly. We demonstrate that DEIP1 interacts with the two cytochrome subunits of the complex, PetA and PetB, and mediates the assembly of intermediates in Cytb6f biogenesis. The identification of DEIP1 provides an entry point into the study of the assembly pathway of a crucial complex in photosynthetic electron transfer.


Asunto(s)
Arabidopsis , Complejo de Citocromo b6f , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Citocromos b/metabolismo , Etiolado , Fotosíntesis , Tilacoides/metabolismo
11.
Curr Opin Biotechnol ; 49: 10-15, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28738208

RESUMEN

Metabolic pathway engineering by transgene expression from the plastid (chloroplast) genome offers significant attractions, including straightforward multigene engineering by pathway expression from operons, high transgene expression levels, and increased transgene containment due to maternal inheritance of plastids in most crops. In addition, it provides direct access to the large and diverse metabolite pools in chloroplasts and non-green plastid types. Here, we review recent progress with extending the toolbox for plastid engineering and highlight selected applications in the area of metabolic engineering, including the combined engineering of nuclear and plastid genomes for the production of artemisinic acid, the direct harness of chloroplast reducing power for the synthesis of dhurrin and the use of an edible host for the production of astaxanthin.


Asunto(s)
Ingeniería Metabólica , Plastidios/metabolismo , Transformación Genética , Antioxidantes/metabolismo , Plantas Modificadas Genéticamente , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA