Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Chemistry ; 30(7): e202302750, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37996997

RESUMEN

Slightly different reaction conditions afforded two distinct cavity-shaped cis-chelating diphosphanes from the same starting materials, namely diphenyl(2-phosphanylphenyl)phosphane and an α-cyclodextrin-derived dimesylate. Thanks to their metal-confining properties, the two diphosphanes form only mononuclear [CuX(PP)] complexes (X=Cl, Br, or I) with the tricoordinated metal ion located just above the center of the cavity. The two series of CuI complexes display markedly different luminescence properties that are both influenced by the electronic properties of the ligand and the unique steric environment provided by the cyclodextrin (CD) cavity. The excited state lifetimes of all complexes are significantly longer than those of the cavity-free analogues suggesting peculiar electronic effects that affect radiative deactivation constants. The overall picture stemming from absorption and emission data suggests close-lying charge-transfer (MLCT, XLCT) and triplet ligand-centered (LC) excited states.

2.
J Am Chem Soc ; 145(19): 10691-10699, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37154483

RESUMEN

A multi-responsive receptor consisting of two (acridinium-Zn(II) porphyrin) conjugates has been designed. The binding constant between this receptor and a ditopic guest has been modulated (i) upon addition of nucleophiles converting acridinium moieties into the non-aromatic acridane derivatives and (ii) upon oxidation of the porphyrin units. A total of eight states has been probed for this receptor resulting from the cascade of the recognition and responsive events. Moreover, the acridinium/acridane conversion leads to a significant change of the photophysical properties, switching from electron to energy transfer processes. Interestingly, for the bis(acridinium-Zn(II) porphyrin) receptor, charge-transfer luminescence in the near-infrared has been observed.

3.
Chemistry ; 29(61): e202301853, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37563909

RESUMEN

The tetrahedral shape-persistent molecule 14+ , containing four identical pyridyl pyridinium units connected via a sp3 hybridized carbon atom, has been investigated in detail by means of steady-state and time resolved spectroscopy. Remarkable photophysical properties are observed, particularly in comparison with protonated and methylated analogues (1H4 8+ , 1Me4 8+ ), which exhibit substantially shorter excited state lifetimes and lower emission quantum yields. Theoretical studies have rationalized the behavior of the tetrameric molecules relative to the monomers, with DFT and TD-DFT calculations corroborating steady-state (absorption and emission) and transient absorption spectra. The behavior of the monomeric compounds (each consisting in one of the four identical subunits of the tetramers, i. e., 2+ , 2H2+ and 2Me2+ ) considerably differs from that of the tetramers, indicating a strong electronic interaction between the subunits in the tetrameric species, likely promoted by the homoconjugation through the connecting sp3  C atom. 2+ is characterized by a peculiar S1 -S2 excited state inversion, whereas the short-lived emitting S1 state of 2H2+ and 2Me2+ exhibits a partial charge-transfer character, as substantiated by spectro-electrochemical studies. Among the six investigated systems, only 14+ is a sizeable luminophore (Φem =0.15), which is related to the peculiar features of its singlet state.

4.
Inorg Chem ; 62(5): 2456-2469, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36696253

RESUMEN

A novel 1,2-azaborine (i.e., 4-methyl-2-(pyridin-2-yl)-2,1-borazaronaphthalene, 1a) has been synthesized and used for the first time as a B-N alternative to common cyclometalating ligands to obtain neutral phosphorescent iridium(III) complexes (i.e., 2a, 3, and 4) of general formula [Ir(C∧N)2(N∧NB)], where C∧N indicates three different cyclometalating ligands (Hppy = 2-phenylpyridine; Hdfppy = 2-(2,4-difluoro-phenyl)pyridine; Hpqu = 2-methyl-3-phenylquinoxaline). Moreover, the azaborine-based complex 2a was compared to the isoelectronic C═C iridium(III) complex 2b, obtained using the corresponding 2-(naphthalen-2-yl)pyridine ligand 1b. Due to the dual cyclometalation mode of such C═C ligand, the isomeric complex 2c was also obtained. All new compounds have been fully characterized by NMR spectroscopy and high-resolution mass spectrometry (MS), and the X-ray structure of 2a was determined. The electronic properties of both ligands and complexes were investigated by electrochemical, density functional theory (DFT), and photophysical methods showing that, compared to the naphthalene analogues, the azaborine ligand induces a larger band gap in the corresponding complexes, resulting in increased redox gap (basically because of the highest occupied molecular orbital (HOMO) stabilization) and blue-shifted emission bands (e.g., λmax = 523 vs 577 nm for 2a vs 2b, in acetonitrile solution at 298 K). On the other hand, the 3LC nature of the emitting state is the same in all complexes and remains centered on the pyridyl-borazaronaphthalene or its C═C pyridyl-naphthalene analogue. As a consequence, the quantum yields of such azaborine-based complexes are comparable to those of the more classical C═C counterparts (e.g., photoluminescence quantum yield (PLQY) = 16 vs 22% for 2a vs 2b, in acetonitrile solution at 298 K) but with enhanced excited-state energy. This proves that such type of azaborine ligands can be effectively used for the development of novel classes of photoactive transition-metal complexes for light-emitting devices or photocatalytic applications.

5.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175320

RESUMEN

We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.

6.
Angew Chem Int Ed Engl ; 62(6): e202214638, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36433744

RESUMEN

A ß-cyclodextrin-based diphosphane with metal-confining properties was efficiently synthesized thanks to an unprecedented Smiles-like rearrangement of diphenyl-(2-phosphanylphenyl)phosphane in the presence of excess n-BuLi. The cis-chelating bidentate ligand is capable of forming very stable heteroleptic [Cu(NN)(PP)]+ complexes in which a metal-bound diimine ligand (bpy, phen, or mmp) is located within the cyclodextrin cavity. As a result of ligand encapsulation, flattening of the metal tetrahedral geometry in the excited state is disfavored, thereby resulting in enhanced luminescent properties.

7.
Acc Chem Res ; 54(6): 1492-1505, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33617233

RESUMEN

Iridium(III) complexes have assumed a prominent role in the areas of photochemistry and photophysics due to the peculiar properties of both the metal itself and the ligand environment that can be assembled around it. Ir(III) is larger, heavier, and bears a higher ionic charge than its analogue and widely used d6 ions such as Fe(II) and Ru(II). Accordingly, its complexes exhibit wider ligand-field d-d orbital splitting with electronic levels centered on the metal, typically nonemissive and photodissociative, not playing a relevant role in excited-state deactivations. In other words, iridium complexes are typically more stable and/or more emissive than Fe(II) and Ru(II) systems. Additionally, the particularly strong heavy-atom effect of iridium promotes singlet-triplet transitions, with characteristic absorption features in the UV-vis and relatively short excited-state lifetimes of emissive triplet levels. Ir(III) is also a platform for anchoring ligands of rather different sorts. Its versatile chemistry includes not only coordination with classic N∧N neutral ligands but also the binding of negatively charged chelators, typically having a cyclometalating C∧N anchor. The carbon-metal bond in these systems has some degree of covalent character, but this does not preclude a localized description of the excited states of the related complexes, which can be designated as metal-centered (MC), ligand-centered (LC), or charge transfer (CT), allowing a simplified description of electronic and photophysical properties. The possibility of binding different types of ligands and making heteroleptic complexes is a formidable tool for finely tuning the nature and energy of the lowest electronic excited state of cationic Ir(III) complexes by ligand design. Herein we give an account of our work on several families of iridium complexes typically equipped with two cyclometalating bidentate ligands (C∧N), in combination with mono or bidentate "ancillary" ligands with N∧N, C∧N, and C∧C motifs. We have explored new synthesis routes for both cyclometalating and ancillary ligands, obtaining primarily cationic complexes but also some neutral or even negatively charged systems. In the domain of the ancillary ligands, we have explored isocyanides, carbenes, mesoionic triazolylidenes, and bis-tetrazolic ligands. For the cyclometalating moiety, we have investigated carbene, mesoionic triazolylidene, and tetrazolic systems. Key results of our work include new strategies to modify both cyclometalating and ancillary ligands by relocating ionic charges, the determination of new factors affecting the stability of complexes, a demonstration of subtle structural effects that strongly modify the photophysical properties, new options to get blue-greenish emitters for optoelectronic devices, and a set of ligand modifications allowing the optimization of electrochemical and excited-state properties to obtain new promising Ir(III) complexes for photoredox catalysis. These results constitute a step forward in the preparation of custom iridium-based materials crafted by excited-state engineering, which is achieved through the concerted effort of computational and synthetic chemistry along with electrochemistry and photochemistry.

8.
Inorg Chem ; 61(22): 8509-8520, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35609179

RESUMEN

Five cationic iridium(III) complexes (1-5) were synthesized exploiting two triazole-based cyclometalating ligands, namely, 1-methyl-4-phenyl-1H-1,2,3-triazole (A) and the corresponding mesoionic carbene 1,3-dimethyl-4-phenyl-1H-1,2,3-triazol-5-ylidene (B). From the combination of these two ligands and the ancillary one, i.e., 4,4'-di-tert-butyl-2,2'-bipyridine (for 1-3) or tert-butyl isocyanide (for 4 and 5), not only the typical bis-heteroleptic complexes but also the much less explored tris-heteroleptic analogues (2 and 5) could be synthesized. The redox and emission properties of all of the complexes are effectively fine-tuned by the different ligands: (i) cyclometalating ligand A induces a stronger highest occupied molecular orbital (HOMO) stabilization compared to B and leads to complexes with progressively narrower HOMO-lowest unoccupied molecular orbital (LUMO) and redox gaps, and lower emission energy; (ii) complexes 1-3, equipped with the bipyridine ancillary ligand, display fully reversible redox processes and emit from predominantly metal-to-ligand charge transfer (MLCT) states with high emission quantum yields, up to 60% in polymeric matrix; (iii) complexes 4 and 5, equipped with high-field isocyanide ligands, display irreversible redox processes and high-energy emission from strongly ligand-centered triplets with long emission lifetimes but relatively low quantum yields (below 6%, both in room-temperature solution and in solid state). This work demonstrates the versatility of phenyl-triazole derivatives as cyclometalating ligands with different chelation modes (i.e., C∧N and C∧C:) for the synthesis of photoactive iridium(III) complexes with highly tunable properties.

9.
Chemistry ; 27(65): 16250-16259, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34431140

RESUMEN

Tetraphenylmethane appended with four pyridylpyridinium units works as a scaffold to self-assemble four ruthenium porphyrins in a tetrahedral shape-persistent giant architecture. The resulting supramolecular structure has been characterised in the solid state by X-ray single crystal analysis and in solution by various techniques. Multinuclear NMR spectroscopy confirms the 1 : 4 stoichiometry with the formation of a highly symmetric structure. The self-assembly process can be monitored by changes of the redox potentials, as well as by modifications in the visible absorption spectrum of the ruthenium porphyrin and by a complete quenching of both the bright fluorescence of the tetracationic scaffold and the weak phosphorescence of the ruthenium porphyrin. An ultrafast photoinduced electron transfer is responsible for this quenching process. The lifetime of the resulting charge separated state (800 ps) is about four times longer in the giant supramolecular structure compared to the model 1 : 1 complex formed by the ruthenium porphyrin and a single pyridylpyridinium unit. Electron delocalization over the tetrameric pyridinium structure is likely to be responsible for this effect.

10.
Phys Chem Chem Phys ; 23(31): 17049-17056, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34346431

RESUMEN

The photophysical properties of heteroleptic rotor-like Ru(ii) complexes containing both a cyclopentadienyl-type ligand and a hydrotris(indazolyl)borate chelating unit with a piano stool structure (Ar5L1-Ru-S1 and L3-Ru-S1) and their corresponding subunits have been investigated. The complexes show peculiar absorption features when compared with their related ligands or fragments. L3-Ru-S1 was found to be non-emissive, while Ar5L1-Ru-S1 showed a weak emission with a quantum yield of 0.27%. With the help of DFT calculations, we demonstrate that the new absorption features can be attributed to ruthenium-based charge transfer transitions which involve the π* orbitals of the phenyl substituents of the cyclopentadienyl ligand.

11.
Chemistry ; 26(48): 11013-11023, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32301186

RESUMEN

Five extended π-conjugated systems with electron donor (D) and acceptor (A) moieties have been synthesized. Their basic D-A-D structural motif is a benzothiadiazole unit symmetrically equipped with two thiophene rings (S2T). Its variants include 1) the same molecular framework in which sulfur is replaced by selenium (Se2T), also with four thiophene units (Se4T) and 2) a D'-D-A-D system having a N-carbazole donor moiety at one end (CS2T) and a D'-D-A-D-A' array with a further acceptor carbonyl unit at the other extremity (CS2TCHO). The goal is taking advantage of the intense luminescence and large Stokes shifts of the five molecules for use in luminescent solar concentrators (LSCs). All of them exhibit intense absorption spectra in the UV/Vis region down to 630 nm, which are fully rationalized by DFT. Emission properties have been studied in CH2 Cl2 (298 and 77 K) as well as in PMMA and PDMS matrices, measuring photoluminescence quantum yields (up to 98 %) and other key optical parameters. The dye-PMMA systems show performances comparable to the present state-of-the-art, in terms of optical and external quantum efficiencies (OQE=47.6 % and EQE=31.3 %, respectively) and flux gain (F=10.3), with geometric gain close to 90. LSC devices have been fabricated and tested in which the five emitters are embedded in PDMS and their wave-guided VIS luminescence feeds crystalline silicon solar cells.

12.
Inorg Chem ; 59(22): 16238-16250, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33125213

RESUMEN

Five cationic iridium(III) complexes with fluorinated cyclometalating tetrazole ligands [Ir(dfptrz)2L]+, where Hdfptrz = 5-(2,4-difluorophenyl)-2-methyl-2H-tetrazole and L = 2,2'-bypiridine (1F), 4,4'-ditert-butyl-2,2'-bipyridine (2F), 1,10-phenantroline (3F), 4,4'-bis(dimethylamino)-2,2'-bipyridine (4F), and tert-butyl isocyanide (5F), were prepared following a one-pot synthetic strategy based on a bis-cyclometalated solvato complex obtained via silver(I)-assisted cyclometalation, which was then reacted with the proper ancillary ligand to get the targeted complexes. The X-ray crystal structures of 2F and 4F were determined, showing that the tetrazole ligands are in a trans arrangement with respect to the iridium center. Electrochemical and photophysical properties, along with density functional theory calculations, allowed a full rationalization of the electronic properties of 1F-5F. In acetonitrile solution at 298 K, complexes 1F-3F, equipped with bipyridine and phenanthroline ligands, exhibit strong vibronically structured luminescence bands in the blue region with photoluminescence quantum yields (PLQYs) in the range 56-76%. This behavior is radically different from the nonfluorinated analogues reported previously, which emits in the green region from 3MLCT excited states. 4F shows relatively strong emission (PLQY = 40%) of charge transfer character centered on the amino-bipyridine ancillary ligand, whereas the emission of 5F is very weak (PLQY = 0.6%), further blue-shifted and attributed to the lowest ligand-centered (3LC) triplet state of the tetrazolyl cyclometalated moiety. A similar photophysical behavior is observed in PMMA at 298 K, whereas in a 77 K matrix, all of the compounds are strong emitters. This novel fluorinated phenyl-tetrazole cyclometalating ligand provides the corresponding iridium(III) complexes with a combination of excited-state energy and redox potentials that make them very promising as photoredox catalysts.

13.
J Am Chem Soc ; 140(6): 2336-2347, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29298047

RESUMEN

A series of copper(I) pseudorotaxanes has been prepared from bis[2-(diphenylphosphino)phenyl] ether (POP) and macrocyclic phenanthroline ligands with different ring sizes (m30, m37, and m42). Variable-temperature studies carried out on the resulting [Cu(mXX)(POP)]+ (mXX = m30, m37, and m42) derivatives have revealed a dynamic conformational equilibrium due to the folding of the macrocyclic ligand. The absorption and luminescence properties of the pseudorotaxanes have been investigated in CH2Cl2. They exhibit metal-to-ligand charge-transfer emission with photoluminescence quantum yields (PLQYs) in the range 20-30%. The smallest system [Cu(m30)(POP)]+ shows minimal differences in spectral shape and position compared to its analogues, suggesting a slightly distorted coordination environment. PLQY is substantially enhanced in poly(methyl methacrylate) films (∼40-45%). The study of emission spectra and excited-state lifetimes in powder samples as a function of temperature (78-338 K) reveals thermally activated delayed fluorescence, with sizable differences in the singlet-triplet energy gap compared to the reference compound [Cu(dmp)(POP)]+ (dmp = 2,9-dimethyl-1,10-phenanthroline) and within the pseudorotaxane series. The system with the largest ring ([Cu(m42)(POP)]+) has been tested as emissive material in OLEDs and affords bright green devices with higher luminance and greater stability compared to [Cu(dmp)(POP)]+, which lacks the macrocyclic ring. This highlights the importance of structural factors in the stability of electroluminescent devices based on Cu(I) materials.

14.
Chemistry ; 24(41): 10422-10433, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29727042

RESUMEN

A CuI bis-phenanthroline rotaxane was prepared by using the [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction to graft a bulky dicyanoquinodimethane (DCNQ) stopper. The electronic properties were investigated with electrochemical and photophysical techniques, in parallel with three reference compounds, namely, the DCNQ derivative alone, the DCNQ-based phenanthroline ligand, and an analogue CuI complex lacking the DCNQ moiety. In all the systems containing the DCNQ unit, the lowest electronic excited states are centered thereon, with the singlet level (S1 ) located at about 1.0 eV, as suggested by TDDFT calculations. Accordingly, in the DCNQ-equipped rotaxane, the typical metal-to-ligand charge-transfer luminescence of the CuI center is totally quenched. Ultrafast transient absorption and emission studies show that, in the rotaxane, the final sink of photoinduced processes is the lowest singlet state of the DCNQ moiety (S1 ), which exhibits strong charge-transfer character and a lifetime of 0.4 ps. Its deactivation leads to population of another excited state with a lifetime of 1.3 ps, which can be the related triplet state (T1 ) or a vibrationally hot level (hot-S0 ). Notably, S1 also shows stimulated fluorescence in the near-infrared (NIR) region between 1100 and 1500 nm, corroborating the TDDFT prediction. This unusual finding opens up the study of ultrashort-lived NIR luminescence in organic donor-acceptor systems.

15.
Inorg Chem ; 57(24): 15537-15549, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30481016

RESUMEN

The electronic and structural properties of ten heteroleptic [Cu(NN)(PP)]+ complexes have been investigated. NN indicates 1,10-phenanthroline (phen) or 4,7-diphenyl-1,10-phenanthroline (Bphen); each of these ligands is combined with five PP bis-phosphine chelators, i.e., bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)benzene (dppb), and bis[(2-diphenylphosphino)phenyl] ether (POP). All complexes are mononuclear, apart from those based on dppm, which are dinuclear. Experimental data-also taken from the literature and including electrochemical properties, X-ray crystal structures, UV-vis absorption spectra in CH2Cl2, luminescence spectra and lifetimes in solution, in PMMA, and as powders-have been rationalized with the support of density functional theory calculations. Temperature dependent studies (78-358 K) have been performed for selected complexes to assess thermally activated delayed fluorescence. The main findings are (i) dependence of the ground-state geometry on the crystallization conditions, with the same complex often yielding different crystal structures; (ii) simple model compounds with imposed C2 v symmetry ([Cu(phen)(PX3)2]+; X = H or CH3) are capable of modeling structural parameters as a function of the P-Cu-P bite angle, which plays a key role in dictating the overall structure of [Cu(NN)(PP)]+ complexes; (iii) as the P-Cu-P angle increases, the energy of the metal-to-ligand charge transfer absorption bands linearly increases; (iv) the former correlation does not hold for emission spectra, which are red-shifted for the weaker luminophores; (v) the larger the number of intramolecular π-interactions within the complex in the ground state, the higher the luminescence quantum yield, underpinning a geometry locking effect that limits the structural flattening of the excited state. This work provides a general framework to rationalize the structure-property relationships of [Cu(NN)(PP)]+, a class of compounds of increasing relevance for electroluminescent devices, photoredox catalysis, and solar-to-fuels conversion, which so far have been investigated in an unsystematic fashion, eluding a comprehensive understanding.

16.
Chemistry ; 23(57): 14200-14212, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28681551

RESUMEN

The dyads 1-3 made of an alkynylated ZnII -porphyrin and a bis-methanofullerene derivative connected through a copper-catalyzed azide-alkyne cycloaddition have been synthesized. The porphyrin and fullerene chromophores are separated through a bridge made of a bismethanofullerene tether linked to different spacers conjugated to the porphyrin moiety [i.e., m-phenylene (1), p-phenylene (2), di-p-phenylene-ethynylene (3)]. Compounds 1-3 exhibit relatively rigid structures with an interchromophoric separation of 1.7, 2.0, and 2.6 nm, respectively, and no face-to-face or direct through-bond conjugation. The photophysical properties of compounds 1-3 have been investigated in toluene and benzonitrile with steady-state and time-resolved techniques as well as model calculations on the Förster energy transfer. Excited-state interchromophoric electronic interactions are observed with a distinct solvent and distance dependence. The latter effect is evidenced in benzonitrile, where compounds 1 and 2 exhibit a photoinduced electron transfer in the Marcus-inverted region, with charge-separated (CS) states living for 0.44 and 0.59 µs, respectively, whereas compound 3 only undergoes energy transfer, as in apolar toluene. The quantum yield of the charge separation (φCS ) of compounds 1 and 2 in benzonitrile is ≥0.75. It is therefore demonstrated that photoinduced energy and electron transfers in porphyrin-fullerene systems with long interchromophoric distances may efficiently occur also when the bridge does not provide a wire-like conjugation and proceed through the triplet states of the chromophoric moieties.

17.
Inorg Chem ; 56(9): 4807-4817, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398725

RESUMEN

The synthesis and photophysical properties of two multichromophoric systems, Pt(II)/B(III) and Pt(II)/Ir(III), based on novel N^O-julolidine ligands are reported. The functionalization of the julolidine core enables the introduction of two different anchoring sites, a terminal acetylene and an N^O chelating moiety, which allow the assembling of two different chromophoric centers. The complex photophysical behavior of these multicomponent arrays is rationalized by investigating a series of model compounds, which are prepared through specific synthetic pathways. The photophysical properties of the final multicomponent arrays are investigated in parallel with the models. The multichromophoric system, composed by a platinum(II) and an iridium(III) chromophore connected through a modified julolidine ditopic ligand, displays a peculiar excitation wavelength dependent luminescence behavior. It exhibits tuning of the emission color from blue to orange, passing through pure and warm white.

18.
Inorg Chem ; 56(17): 10584-10595, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28829579

RESUMEN

A series of monoanionic Ir(III) complexes (2-4) of general formula [Ir(C^N)2(b-trz)](TBA) are presented, where C^N indicates three different cyclometallating ligands (Hppy = 2-phenylpyridine; Hdfppy = 2-(2,4-difluoro-phenyl)pyridine; Hpqu = 2-methyl-3-phenylquinoxaline), b-trz is a bis-tetrazolate anionic N^N chelator (H2b-trz = di(1H-tetrazol-5-yl)methane), and TBA = tetrabutylammonium. 2-4 are prepared in good yields by means of the reaction of the suitable b-trz bidentate ligand with the desired iridium(III) precursor. The chelating nature of the ancillary ligand, thanks to an optimized structure and geometry, improves the stability of the complexes, which have been fully characterized by NMR spectroscopy and high-resolution MS, while X-ray structure determination confirmed the binding mode of the b-trz ligand. Density functional theory calculations show that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are mainly localized on the metal center and the cyclometalating ligands, while the bis-tetrazolate unit does not contribute to the frontier orbitals. By comparison with selected classes of previously published cationic and anionic complexes with high ligand field and even identical cyclometallating moieties, it is shown that the HOMO-LUMO gap is similar, but the absolute energy of the frontier orbitals is remarkably higher for anionic vs cationic compounds, due to electrostatic effects. 2-4 exhibit reversible oxidation and reduction processes, which make them interesting candidates as active materials for light emitting electrochemical cells, along with red, green, and blue emission, thanks to the design of the C^N ligands. Photoluminescence quantum yields range from 28% (4, C^N = pqu, red emitter) to 83% (3, C^N = dfppy, blue emitter) in acetonitrile, with the latter compound reaching 95% in poly(methyl methacrylate) (PMMA) matrix. In thin films, the photoluminescence quantum yield decreases substantially probably due to the small intersite distance between the complexes and the presence of quenching sites. In spite of this, surprisingly stable electroluminescence was observed for devices employing complex 2, demonstrating the robustness of the anionic compounds.

19.
Chemistry ; 22(1): 32-57, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26584653

RESUMEN

The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye-sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources-particularly minerals-which are needed to manufacture energy converters and storage devices on a multi-TW scale.

20.
Inorg Chem ; 55(16): 7912-9, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27483041

RESUMEN

Two phosphorescent Ir(III) complexes bearing a mesoionic carbene ligand based on 1,2,3-triazolylidene are obtained for the first time. A silver-iridium transmetalation of the in situ-generated mesoionic carbene affords the cationic dichloro complex [Ir(trizpy)2Cl2](+) (3, trizpy = 1-benzyl-3-methyl-4-(pyridin-2-yl)-1H-1,2,3-triazolylidene) that reacts with a bis-tetrazolate (b-trz) dianionic ligand to give [Ir(trizpy)2(b-trz)](+) (5). The new compounds are fully characterized by NMR spectroscopy and mass spectrometry, and the X-ray structure of 3 is determined. The electrochemical behavior is somewhat different compared to most standard cationic iridium complexes. The first oxidation process is shifted to substantially higher potential in both 3 and 5, due to peculiar and different ligand-induced effects in the two cases, which stabilize the highest occupied molecular orbital; reduction processes are centered on the mesoionic carbene ligands. Both compounds exhibit a mostly ligand-centered luminescence band in the blue-green spectral region, substantially stronger in the case of 5 versus 3, both in CH3CN solution and in poly(methyl methacrylate) matrix at room temperature. Optimized geometries, orbital energies, spin densities, and electronic transitions are determined via density functional theory calculations, which support a full rationalization of the electrochemical and photophysical behavior. This work paves the way for the development of Ir-based emitters with neutral mesoionic carbene ligands and anionic ancillary ligands, a new concept in the area of cationic Ir(III) complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA