Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(14): 9801-9810, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38551407

RESUMEN

The sequence-controlled assembly of nucleic acids and amino acids into well-defined superstructures constitutes one of the most revolutionary technologies in modern science. The elaboration of such superstructures from carbohydrates, however, remains elusive and largely unexplored on account of their intrinsic constitutional and configurational complexity, not to mention their inherent conformational flexibility. Here, we report the bottom-up assembly of two classes of hierarchical superstructures that are formed from a highly flexible cyclo-oligosaccharide─namely, cyclofructan-6 (CF-6). The formation of coordinative bonds between the oxygen atoms of CF-6 and alkali metal cations (i) locks a myriad of flexible conformations of CF-6 into a few rigid conformations, (ii) bridges adjacent CF-6 ligands, and (iii) gives rise to the multiple-level assembly of three extended frameworks. The hierarchical superstructures present in these frameworks have been shown to modulate their nanomechanical properties. This research highlights the unique opportunities of constructing convoluted superstructures from carbohydrates and should encourage future endeavors in this underinvestigated field of science.


Asunto(s)
Carbohidratos , Metales , Metales/química , Carbohidratos/química , Conformación Molecular , Aminoácidos
2.
Anal Bioanal Chem ; 416(12): 3007-3017, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565719

RESUMEN

Enantioseparation of α -hydroxy acids is essential since specific enantiomers of these compounds can be used as disease biomarkers for diagnosis and prognosis of cancer, brain diseases, kidney diseases, diabetes, etc., as well as in the food industry to ensure quality. HPLC methods were developed for the enantioselective separation of 11 α -hydroxy acids using a superficially porous particle-based teicoplanin (TeicoShell) chiral stationary phase. The retention behaviors observed for the hydroxy acids were HILIC, reversed phase, and ion-exclusion. While both mass spectrometry and UV spectroscopy detection methods could be used, specific mobile phases containing ammonium formate and potassium dihydrogen phosphate, respectively, were necessary with each approach. The LC-MS mode was approximately two orders of magnitude more sensitive than UV detection. Mobile phase acidity and ionic strength significantly affected enantioresolution and enantioselectivity. Interestingly, higher ionic strength resulted in increased retention and enantioresolution. It was noticed that for formate-containing mobile phases, using acetonitrile as the organic modifier usually resulted in greater enantioresolution compared to methanol. However, sometimes using acetonitrile with high ammonium formate concentrations led to lengthy retention times which could be avoided by using methanol as the organic modifier. Additionally, the enantiomeric purities of single enantiomer standards were determined and it was shown that almost all standards contained some levels of enantiomeric impurities.


Asunto(s)
Biomarcadores , Hidroxiácidos , Biomarcadores/análisis , Cromatografía Líquida de Alta Presión/métodos , Hidroxiácidos/análisis , Hidroxiácidos/química , Límite de Detección , Cromatografía Líquida con Espectrometría de Masas , Espectrofotometría Ultravioleta/métodos , Estereoisomerismo
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731937

RESUMEN

Due to the favorable features obtained through the incorporation of fluorine atom(s), fluorinated drugs are a group with emerging pharmaceutical importance. As their commercial availability is still very limited, to expand the range of possible candidates, new fluorinated tryptophan analogs were synthesized. Control of enantiopurity during the synthesis procedure requires that highly efficient enantioseparation methods be available. In this work, the enantioseparation of seven fluorinated tryptophans and tryptophan was studied and compared systematically to (i) develop analytical methods for enantioselective separations and (ii) explore the chromatographic features of the fluorotrytophans. For enantioresolution, macrocyclic glycopeptide-based selectors linked to core-shell particles were utilized, applying liquid chromatography-based methods. Application of the polar-ionic mode resulted in asymmetric and broadened peaks, while reversed-phase conditions, together with mobile-phase additives, resulted in baseline separation for all studied fluorinated tryptophans. The marked differences observed between the methanol and acetonitrile-containing eluent systems can be explained by the different solvation abilities of the bulk solvents of the applied mobile phases. Among the studied chiral selectors, teicoplanin and teicoplanin aglycone were found to work effectively. Under optimized conditions, baseline separations were achieved within 6 min. Ionic interactions were semi-quantitatively characterized and found to not influence enantiorecognition. Interestingly, fluorination of the analytes does not lead to marked changes in the chromatographic characteristics of the methanol-containing eluents, while larger differences were noticed when the polar but aprotic acetonitrile was applied. Experiments conducted on the influence of the separation temperature indicated that the separations are enthalpically driven, with only one exception. Enantiomeric elution order was found to be constant on both teicoplanin and teicoplanin aglycone-based chiral stationary phases (L < D) under all applied chromatographic conditions.


Asunto(s)
Glicopéptidos , Halogenación , Teicoplanina , Triptófano , Triptófano/química , Triptófano/análogos & derivados , Glicopéptidos/química , Estereoisomerismo , Teicoplanina/química , Teicoplanina/análogos & derivados , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Compuestos Macrocíclicos/química
4.
Anal Chem ; 95(29): 11028-11036, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428180

RESUMEN

With the introduction of ultrahigh efficiency columns and fast separations, the need to eliminate peak deformation contributed by the instrument must be effectively solved. Herein, we develop a robust framework to automate deconvolution and minimize its artifacts, such as negative dips, wild noise oscillations, and ringing, by combining regularized deconvolution and Perona-Malik (PM) anisotropic diffusion methods. A asymmetric generalized normal (AGN) function is proposed to model the instrumental response for the first time. With no-column data at various flow rates, the interior point optimization algorithm extracts the parameters describing instrumental distortion. The column-only chromatogram was reconstructed using the Tikhonov regularization technique with minimal instrumental distortion. For illustration, four different chromatography systems are used in fast chiral and achiral separations with 2.1 and 4.6 mm i.d. columns. Ordinary HPLC data can approach highly optimized UHPLC data. Similarly, in fast HPLC-circular dichroism (CD) detection, 8000 plates were gained for a fast chiral separation. Moment analysis of deconvolved peaks confirms correction of the center of mass, variance, skew, and kurtosis. This approach can be easily integrated and used with virtually any separation and detection system to provide enhanced analytical data.

5.
Org Biomol Chem ; 21(7): 1422-1434, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36723147

RESUMEN

An investigation of asymmetric total syntheses of three indole-imidazole alkaloids from histidine are described. A common advanced piperidinone was contructed via a ring-closing metathesis which was then subjected to a modified Fischer indole synthesis. Deprotection of an N-tosyl group via a dissolving metal reduction affords haploscleridamine which upon reaction with aqueous formaldehyde in trifluoroethanol provided villagorgin A. On closer examination, it was found that villagorgin A was produced as a byproduct during the reductive detosylation in the presence of magnesium and methanol. Attempts to obtain the brominated haploscleridamine congener, lissoclin C through use of bromophenyl hydrazone were thwarted by reductive debromination during deprotection efforts. Investigation of the enantiopurity of the synthetic natural products revealed production of almost racemic materials in some batches as the result of partial racemization of an early stage intermediate. A revised approach routinely provided scalemic haploscleridamine and villagorgin in 30% ee. Analysis of the enantiomer composition of all intermediates by HPLC using columns with chiral stationary phases; this analysis revealed several steps where erosion of enantiomer composition occurred.

6.
Anal Bioanal Chem ; 415(27): 6799-6807, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37787853

RESUMEN

While the existence of D-amino acids in peptides and proteins has recently been accepted in higher forms of life, their roles and importance are yet to be understood. The lack of analytical methods present for such epimeric and/or isomeric analyses often limits developments in the field. Studies have shown the elevated presence of epimeric and isomeric modifications to amyloid-beta (Aß) peptides extracted from Alzheimer's disease patients. These modifications most frequently occur through aspartic acid and serine residues. Because such peptides are indistinguishable by mass alone, selective liquid chromatography tandem mass spectrometry analysis is required to differentiate such peptides. Herein, we examine MS/MS of tryptic fragments of Aß peptides containing D-Asp, L-iso-Asp, D-iso-Asp, and/or D-Ser modifications. Peptide ionizability and fragmentation are explored through selected reaction monitoring, selected ion monitoring, and product ion scan. The results show the variability of ionization and fragmentation for many "identical mass peptides" and how these differences can affect the analysis of isomeric and epimeric peptides.


Asunto(s)
Enfermedad de Alzheimer , Espectrometría de Masas en Tándem , Humanos , Fragmentos de Péptidos/química , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/metabolismo , Isomerismo , Ácido Aspártico/análisis
7.
Chirality ; 35(9): 508-534, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37074214

RESUMEN

Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.


Asunto(s)
Aminoácidos , Proteínas , Animales , Humanos , Estereoisomerismo , Péptidos
8.
Chirality ; 35(12): 937-951, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37461229

RESUMEN

Derivatives of the nido-7,8-C2 B9 H12 (1-) (dicarbollide ion) and [3,3'-Co-(1,2-C2 B9 H11 )2 ](1-) cobalt sandwich (COSAN) ion represent groups of extremely chemically and thermally stable abiotic compounds. They are being investigated in many research areas, that is, medicinal chemistry, material sciences, analytical chemistry, and electrochemistry. The chirality of these compounds remains still grossly overlooked, what is also reflected in limited number of reports on their chiral separations. Continued progress depends on reliable, fast, and cost-effective methods for such separations. Recently, chiral separations of COSAN derivatives were achieved in liquid chromatography and supercritical fluid chromatography. Only five anionic derivatives of nido-7,8-C2 B9 H12 (1-) were successfully enantioseparated in liquid chromatography. Efforts to separate anionic nido-7,8-C2 B9 H12 (1-) in supercritical chromatography have failed, and only a few dicarbollide ions were separated using liquid chromatography. Generally, all chiral separations in liquid chromatography took about 30 min. Herein, we identify a versatile column capable of separating both COSAN and nido-7,8-C2 B9 H12 (1-) derivatives and achieve faster analyses times employing commercially available superficially porous chiral stationary phases. The semisynthetic hydroxypropyl ß-cyclodextrin-based column (CDShell-RSP) is identified as the column of choice from the tested columns by separating 19 of 27 compounds from each structural motifs tested mainly in less than 10 min. The dihydroxyalkyl, oxygen-bridged hydroxyalkyl, and bisphenylene-bridged COSAN derivatives were baseline separated in less than 5 min exceeding the results of supercritical fluid chromatography. Methods developed herein will aid synthetic chemists without the possession of a supercritical fluid chromatograph to achieve fast chiral separations of COSAN and derivatives of nido-7,8-C2 B9 H12 (1-) on a common liquid chromatograph without the need of dedicated instrumentation.

9.
Chirality ; 35(8): 461-468, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36929217

RESUMEN

D-amino acids and epimeric peptides/proteins can play crucial biological roles and adversely affect protein folding and oligopeptide aggregation in age-related pathologies in humans. This has ignited interest in free D-amino acids as well as those incorporated in peptides/proteins and their effects in humans. However, such stereoisomeric analytes are often elusive and in low abundance with few existing methodologies capable of scouting for and identifying them. In this work, we examine the feasibility of using teicoplanin aglycone, a macrocyclic antibiotic, which has been reported to strongly retain D-amino acids and peptides with a D-amino acid on the C-terminus, for use as a solid phase extraction (SPE) medium. The HPLC retention factors of L-/D-amino acids and C-terminus modified D-amino acid-containing peptides and their L-amino acid exclusive counterparts on teicoplanin aglycone are presented. Retention curve differences between amino acids and peptides highlight regions of solvent composition that can be utilized for their separation. This approach is particularly useful when coupled with enzymatic hydrolysis via carboxypeptidase Y to eliminate all L-amino acid exclusive peptides. The remaining peptides with carboxy-terminal D-amino acids are then more easily concentrated and identified.


Asunto(s)
Aminoácidos , Péptidos , Humanos , Aminoácidos/química , Catepsina A , Estereoisomerismo , Proteínas , Cromatografía Líquida de Alta Presión/métodos
10.
J Sep Sci ; 46(8): e2200738, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36806481

RESUMEN

A loading and productivity study was done using three racemates on vancomycin and teicoplanin-bonded chiral stationary phases of different particle formats. Two columns were packed with 2.7 µm superficially porous particles and two columns were packed with identically bonded 5 µm fully porous particles. The last two columns were packed with specially synthesized 4.5 µm vancomycin and teicoplanin superficially porous particles. The loading of different chiral compounds showed that the columns filled with 2.7-µm chiral stationary phases were inappropriate for preparative separations due to their very low permeability which precluded high flow rates. However, columns containing 4.5 µm superficially porous (core-shell) particles were as effective for small-scale preparative chiral separations as columns filled with classical 5 µm fully porous particles. Comparing the 4.5 µm superficially porous particles and 5 µm fully porous particles teicoplanin columns, the observed respective productivities of 270 and 265 mg/g chiral phase/h for 5-methyl-5-phenyl hydantoin enantiomers were obtained. Particular attention was given to the peculiar case of the mianserin enantiomeric separation on vancomycin columns that gave observed productivities of 200 and 205 mg/g chiral phase/h on the 4.5 µm superficially porous particles and 5 µm fully porous particles, respectively.

11.
Molecules ; 28(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770866

RESUMEN

The enantioselective potential of two macrocyclic glycopeptide-based chiral stationary phases for analysis of 28 structurally diverse biologically active compounds such as derivatives of pyrovalerone, ketamine, cathinone, and other representatives of psychostimulants and antidepressants was evaluated in sub/supercritical fluid chromatography. The chiral selectors immobilized on 2.7 µm superficially porous particles were teicoplanin (TeicoShell column) and modified macrocyclic glycopeptide (NicoShell column). The influence of the organic modifier and different mobile phase additives on the retention and enantioresolution were investigated. The obtained results confirmed that the mobile phase additives, especially water as a single additive or in combination with basic and acidic additives, improve peak shape and enhance enantioresolution. In addition, the effect of temperature was evaluated to optimize the enantioseparation process. Both columns exhibited comparable enantioselectivity, approximately 90% of the compounds tested were enantioseparated, and 30% out of them were baseline enantioresolved under the tested conditions. The complementary enantioselectivity of the macrocyclic glycopeptide-based chiral stationary phases was emphasized. This work can be useful for the method development for the enantioseparation of basic biologically active compounds of interest.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cromatografía con Fluido Supercrítico/métodos , Estereoisomerismo , Glicopéptidos/química , Teicoplanina/química , Preparaciones Farmacéuticas
12.
Anal Chem ; 94(42): 14611-14617, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36219766

RESUMEN

The concept of coupling gas chromatography with molecular rotational resonance spectroscopy (GC-MRR) was introduced in 2020, combining the separation capabilities of GC with the unparalleled specificity of MRR. In this study, we address the challenge of the high data throughput of MRR spectrometers, as GC-MRR spectrometers can generate thousands to millions of data points per second. In the previous GC-MRR studies, a free induction decay (FID) measurement was Fourier transformed to generate each point on the chromatogram. Such extensive calculations limit the performance, sensitivity, and speed of GC-MRR. A direct approach is proposed here to extract peak intensity from FID using the Gram-Schmidt vector orthogonalization method. First, analyte-free FIDs are used to construct a basis set representing the instrument's background noise, and then the remaining FIDs are orthogonalized to this fixed basis set. Each FID yields a single intensity value after Gram-Schmidt orthogonalization. The magnitude of the orthogonalized analyte FID is the signal intensity plotted in the chromatogram. This approach is computationally much faster (up to 10 times) than the conventional Fourier transform algorithm, is at least as sensitive as the FT algorithm, and maintains or improves the chromatographic peak shape. We compare the sensitivity, linearity, and chromatographic peak shapes for the Fourier transform and Gram-Schmidt approaches using both synthetically generated FIDs and instrumental data. This approach would allow the summed peak intensity to be displayed essentially in real-time, following which identified peaks can be further investigated to identify and quantify the species associated with each.


Asunto(s)
Algoritmos , Análisis de Fourier , Cromatografía de Gases/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos
13.
Anal Chem ; 94(48): 16638-16646, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36395322

RESUMEN

A majority of enantiomeric separations show some degree of peak asymmetry, which is detrimental to quantitative and semiquantitative chiral analysis. This paper presents a simple and rapid peak symmetrization algorithm for the correction or reduction of peak tailing or fronting in exponentially modified Gaussians. Raw chromatographic data can be symmetrized by adding a correct fraction of the first derivative to the chromatogram. The area remains invariant since the area under the first derivative is zero for a pure Gaussian and numerically close to zero for asymmetric peaks. A method of easily extracting the distortion parameter is provided, as well as insight into how pre-smoothing the data with the "perfect smoother" algorithm can suppress high frequencies effectively. The central difference method is also used to compute the first derivative, reducing root-mean-square noise by up to 28% compared to the standard forward difference method. A survey of 40 chiral separations is presented, demonstrating the range of asymmetry observed in chiral separations. Examples of symmetrization of the peaks from enantiomers in comparable and disproportionate concentrations are also provided. Artifacts of deconvolution are discussed, along with methods to mitigate such artifacts.


Asunto(s)
Algoritmos , Cromatografía , Cromatografía/métodos , Estereoisomerismo , Artefactos
14.
Anal Chem ; 94(3): 1804-1812, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34931812

RESUMEN

Enantioselective chromatography has been the preferred technique for the determination of enantiomeric excess across academia and industry. Although sequential multicolumn enantioselective supercritical fluid chromatography screenings are widespread, access to automated ultra-high-performance liquid chromatography (UHPLC) platforms using state-of-the-art small particle size chiral stationary phases (CSPs) is an underdeveloped area. Herein, we introduce a multicolumn UHPLC screening workflow capable of combining 14 columns (packed with sub-2 µm fully porous and sub-3 µm superficially porous particles) with nine mobile phase eluent choices. This automated setup operates under a vast selection of reversed-phase liquid chromatography, hydrophilic interaction liquid chromatography, polar-organic mode, and polar-ionic mode conditions with minimal manual intervention and high success rate. Examples of highly efficient enantioseparations are illustrated from the integration of chiral screening conditions and computer-assisted modeling. Furthermore, we describe the nuances of in silico method development for chiral separations via second-degree polynomial regression fit using LC simulator (ACD/Labs) software. The retention models were found to be very accurate for chiral resolution of single and multicomponent mixtures of enantiomeric species across different types of CSPs, with differences between experimental and simulated retention times of less than 0.5%. Finally, we illustrate how this approach lays the foundation for a streamlined development of ultrafast enantioseparations applied to high-throughput enantiopurity analysis and its use in the second dimension of two-dimensional liquid chromatography experiments.


Asunto(s)
Cromatografía de Fase Inversa , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Simulación por Computador , Estereoisomerismo
15.
Anal Biochem ; 642: 114451, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774536

RESUMEN

Carboxypeptidases enzymatically cleave the peptide bond of C-terminal amino acids. In humans, it is involved in enzymatic synthesis and maturation of proteins and peptides. Carboxypeptidases A and Y have difficulty hydrolyzing the peptide bond of dipeptides and some other amino acid sequences. Early investigations into different N-blocking groups concluded that larger moieties increased substrate susceptibility to peptide bond hydrolysis with carboxypeptidases. This study conclusively demonstrates that 6-aminoquinoline-N-hydroxysuccimidyl carbamate (AQC) as an N-blocking group greatly enhances substrate hydrolysis with carboxypeptidase. AQC addition to the N-terminus of amino acids and peptides also improves chromatographic peak shapes and sensitivities via mass spectrometry detection. These enzymes have been used for amino acid sequence determination prior to the advent of modern proteomics. However, most modern proteomic methods assume that all peptides are comprised of l-amino acids and therefore cannot distinguish L-from d-amino acids within the peptide sequence. The majority of existing methods that allow for chiral differentiation either require synthetic standards or incur racemization in the process. This study highlights the resistance of d-amino acids within peptides to enzymatic hydrolysis by Carboxypeptidase Y. This stereoselectivity may be advantageous when screening for low abundance peptide stereoisomers.


Asunto(s)
Carboxipeptidasas A/metabolismo , Catepsina A/metabolismo , Péptidos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Humanos , Espectrometría de Masas , Péptidos/química
16.
Chirality ; 34(10): 1338-1354, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904758

RESUMEN

Crystallization is one of the largest and most economical bulk purification techniques used in industry today. There has been an increase in demand for enantiomerically pure compound production for research, organic synthesis, pharmaceutical drug production, and other applications. Even after asymmetric synthesis, chiral purification will always be necessary. The focus of this review is on recent advances in chiral crystallization for the purification of enantiomers. A comprehensive discussion of three techniques and their mechanisms is provided, namely: attrition-enhanced deracemization, cocrystallization, and inorganic ionic cocrystallization. Several examples of attrition-enhanced deracemization are discussed. The key advantage of this technique is that it eliminates enantiomeric waste and can be used to produce enantiomeric excesses of greater than 99% from racemic mixtures. Chiral cocrystallization is examined, with over 60 cocrystallizing compounds, as an excellent means for enantiomeric enrichment. Selective chiral inclusion complexation was shown to be a novel approach for the formation of cocrystals. Chiral inorganic ionic cocrystallization is a new technique involving the formation of cocrystals between chiral ligands and certain metal salts in order to produce conglomerate crystal behavior in otherwise racemic compounds.


Asunto(s)
Sales (Química) , Cristalización , Estereoisomerismo
17.
Chirality ; 34(10): 1311-1319, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35869647

RESUMEN

High-performance liquid chromatography (HPLC) is an ideal tool for enantiomeric separations of different drugs. In this study, the direct enantioseparation of bupropion, an atypical antidepressant structurally related to cathinone, was explored by using five chiral columns, including three based on derivatized cyclofructans, macrocyclic glycopeptide teicoplanin, and an immobilized amylose derivative under multimodal elution conditions. Baseline enantioseparation was obtained on the LarihcShell CF6-RN column, with derivatized cyclofructan 6, in the polar organic mode. The effects of the mobile-phase composition, type and content of major components, the nature and the amount of mobile-phase additives, and the column temperature on the retention, selectivity, and resolution were investigated to optimize enantioseparation. The calibration curve was linear in the range of 10-125 µg/ml for each enantiomer. The limits of detection and quantification were 0.1 and 0.3 µg/ml for both enantiomers of bupropion. The chiral recognition was controlled especially by H bonds, π-π, dipole-dipole interactions, and steric effects. Finally, the developed method was applied to the determination of bupropion in the commercially available drug.


Asunto(s)
Bupropión , Glicopéptidos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Glicopéptidos/química , Estereoisomerismo
18.
Chirality ; 34(4): 620-629, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064695

RESUMEN

Eleven racemic ethanolamine derivatives were prepared, and their enantiomers were separated using liquid chromatography with various chiral columns. These derivatives included chiral vicinal amino alcohols, ß-hydroxy ureas, ß-hydroxy thioureas, and ß-hydroxy guanidines, all of which are present in many active pharmaceutical ingredients. The screening study was performed with six chiral stationary phase containing columns, including four recently introduced superficially porous particles bonded with two macrocyclic glycopeptides, a cyclodextrin derivative and a cyclofructan derivative. The two remaining columns contained chiral stationary phases, based on either a cellulose derivative or derivatized amylose, both bonded to fully porous particles. The cyclodextrin and cellulose-based chiral stationary phases proved to be the most broadly effective selectors and were able to separate 8 and 7 of the 11 tested compounds, respectively. With respect to analyte structural features, marked differences in enantiorecognition were observed between compounds containing phenyl and cyclohexyl groups adjacent to the stereogenic center. Additionally, replacing a small electronegative oxygen atom by a larger and less electronegative sulfur atom induced a significant difference in chiral recognition by the cellulose derivative as well as by the vancomycin-based chiral selectors.


Asunto(s)
Etanolamina , Glicopéptidos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Glicopéptidos/química , Estereoisomerismo
19.
Anal Chem ; 93(46): 15525-15533, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34748700

RESUMEN

A next-generation gas chromatograph-molecular rotational resonance (MRR) spectrometer (GC-MRR) with instrumental improvements and higher sensitivity is described. MRR serves as a structural information-rich detector for GC with extremely narrow linewidths and capabilities surpassing 1H nuclear magnetic resonance/Fourier transform infrared spectroscopy/mass spectrometry (MS) while offering unparalleled specificity in regard to a molecule's three-dimensional structure. With a Fabry-Pérot cavity and a supersonic jet incorporated into a GC-MRR, dramatic improvements in sensitivity for molecules up to 244 Da were achieved in the microwave region compared to the only prior work, which demonstrated the GC-MRR idea for the first time with millimeter waves. The supersonic jet cools the analytes to ∼2 K, resulting in a limited number of molecular rotational and vibrational levels and enabling us to obtain stronger GC-MRR signals. This has allowed the limits of detection of the GC-MRR to be comparable to a GC thermal conductivity detector with an optimized choice of gases. The performance of this GC-MRR system is reported for a range of molecules with permanent dipole moments, including alcohols, nitrogen heterocyclics, halogenated compounds, dioxins, and nitro compounds in the molecular mass range of 46-244 Da. The lowest amount of any substance yet detected by MRR in terms of mass is reported in this work. A theoretically unexpected finding is reported for the first time about the effect of the GC carrier gas (He, Ne, and N2) on the sensitivity of the analysis in the presence of the gas driving the supersonic jet (He, Ne, and N2) in the GC-MRR. Finally, the idea of total molecule monitoring in the GC-MRR analogous to selected ion monitoring in GC-MS is illustrated. Structural isomers and isotopologues of bromobutanes and bromonitrobenzenes are used to demonstrate this concept.


Asunto(s)
Gases , Cromatografía de Gases y Espectrometría de Masas , Análisis Espectral
20.
Molecules ; 26(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406592

RESUMEN

Twelve new azole compounds were synthesized through an ene reaction involving methylidene heterocycles and phenylmaleimide, producing four oxazoles, five thiazoles, and one pyridine derivative, and ethyl glyoxal for an oxazole and a thiazole compound. The twelve azoles have a stereogenic center in their structure. Hence, a method to separate the enantiomeric pairs, must be provided if any further study of chemical and pharmacological importance of these compounds is to be accomplished. Six chiral stationary phases were assayed: four were based on macrocyclic glycopeptide selectors and two on linear carbohydrates, i.e., derivatized maltodextrin and amylose. The enantiomers of the entire set of new chiral azole compounds were separated using the three different mobile phase elution modes: normal phase, polar organic, and reversed phase. The most effective chiral stationary phase was the MaltoShell column, which was able to separate ten of the twelve compounds in one elution mode or another. Structural similarities in the newly synthesized oxazoles provided some insights into possible chiral recognition mechanisms.


Asunto(s)
Amilosa/química , Azoles/química , Azoles/aislamiento & purificación , Glicopéptidos/química , Polisacáridos/química , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA