Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Methods ; 186: 42-51, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32758682

RESUMEN

The rumen microbiome constitutes a dense and complex mixture of anaerobic bacteria, archaea, protozoa, virus and fungi. Collectively, rumen microbial populations interact closely in order to degrade and ferment complex plant material into nutrients for host metabolism, a process which also produces other by-products, such as methane gas. Our understanding of the rumen microbiome and its functions are of both scientific and industrial interest, as the metabolic functions are connected to animal health and nutrition, but at the same time contribute significantly to global greenhouse gas emissions. While many of the major microbial members of the rumen microbiome are acknowledged, advances in modern culture-independent meta-omic techniques, such as metaproteomics, enable deep exploration into active microbial populations involved in essential rumen metabolic functions. Meaningful and accurate metaproteomic analyses are highly dependent on representative samples, precise protein extraction and fractionation, as well as a comprehensive and high-quality protein sequence database that enables precise protein identification and quantification. This review focuses on the application of rumen metaproteomics, and its potential towards understanding the complex rumen microbiome and its metabolic functions. We present and discuss current methods in sample handling, protein extraction and data analysis for rumen metaproteomics, and finally emphasize the potential of (meta)genome-integrated metaproteomics for accurate reconstruction of active microbial populations in the rumen.


Asunto(s)
Crianza de Animales Domésticos/métodos , Microbioma Gastrointestinal/fisiología , Metagenómica/métodos , Proteómica/métodos , Rumen/microbiología , Animales , Interacciones Microbiota-Huesped/fisiología , Ganado/microbiología , Ganado/fisiología , Metagenoma , Sitios de Carácter Cuantitativo/fisiología , Rumiantes/microbiología , Rumiantes/fisiología
2.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163597

RESUMEN

The objective of the current study was to examine the effects of yeasts on intestinal health and transcriptomic profiles from the distal intestine and spleen tissue of Atlantic salmon fed SBM-based diets in seawater. Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA) yeasts were heat-inactivated with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h (ACJ and AWA), followed by spray-drying. Six diets were formulated, one based on fishmeal (FM), a challenging diet with 30% soybean meal (SBM) and four other diets containing 30% SBM and 10% of each of the four yeast fractions (i.e., ICJ, ACJ, IWA and AWA). The inclusion of CJ yeasts reduced the loss of enterocyte supranuclear vacuolization and reduced the population of CD8α labeled cells present in the lamina propria of fish fed the SBM diet. The CJ yeasts controlled the inflammatory responses of fish fed SBM through up-regulation of pathways related to wound healing and taurine metabolism. The WA yeasts dampened the inflammatory profile of fish fed SBM through down-regulation of pathways related to toll-like receptor signaling, C-lectin receptor, cytokine receptor and signal transduction. This study suggests that the yeast species, Cyberlindnera jadinii and Wickerhamomyces anomalus are novel high-quality protein sources with health-beneficial effects in terms of reducing inflammation associated with feeding plant-based diets to Atlantic salmon.


Asunto(s)
Alimentación Animal , Candida/química , Glycine max/química , Intestinos/metabolismo , Saccharomycetales/química , Salmo salar/crecimiento & desarrollo , Transcriptoma , Animales
3.
J Proteome Res ; 20(8): 4041-4052, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34191517

RESUMEN

Chitin is an abundant natural polysaccharide that is hard to degrade because of its crystalline nature and because it is embedded in robust co-polymeric materials containing other polysaccharides, proteins, and minerals. Thus, it is of interest to study the enzymatic machineries of specialized microbes found in chitin-rich environments. We describe a genomic and proteomic analysis of Andreprevotia ripae, a chitinolytic Gram-negative bacterium isolated from an anthill. The genome of A. ripae encodes four secreted family GH19 chitinases of which two were detected and upregulated during growth on chitin. In addition, the genome encodes as many as 25 secreted GH18 chitinases, of which 17 were detected and 12 were upregulated during growth on chitin. Finally, the single lytic polysaccharide monooxygenase (LPMO) was strongly upregulated during growth on chitin. Whereas 66% of the 29 secreted chitinases contained two carbohydrate-binding modules (CBMs), this fraction was 93% (13 out of 14) for the upregulated chitinases, suggesting an important role for these CBMs. Next to an unprecedented multiplicity of upregulated chitinases, this study reveals several chitin-induced proteins that contain chitin-binding CBMs but lack a known catalytic function. These proteins are interesting targets for discovery of enzymes used by nature to convert chitin-rich biomass. The MS proteomic data have been deposited in the PRIDE database with accession number PXD025087.


Asunto(s)
Betaproteobacteria/enzimología , Quitinasas , Proteómica , Animales , Hormigas/microbiología , Proteínas Bacterianas/genética , Betaproteobacteria/aislamiento & purificación , Quitina , Quitinasas/genética , Oxigenasas de Función Mixta/genética , Polisacáridos
4.
J Proteome Res ; 20(4): 2130-2137, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33683127

RESUMEN

metaQuantome is a software suite that enables the quantitative analysis, statistical evaluation. and visualization of mass-spectrometry-based metaproteomics data. In the latest update of this software, we have provided several extensions, including a step-by-step training guide, the ability to perform statistical analysis on samples from multiple conditions, and a comparative analysis of metatranscriptomics data. The training module, accessed via the Galaxy Training Network, will help users to use the suite effectively both for functional as well as for taxonomic analysis. We extend the ability of metaQuantome to now perform multi-data-point quantitative and statistical analyses so that studies with measurements across multiple conditions, such as time-course studies, can be analyzed. With an eye on the multiomics analysis of microbial communities, we have also initiated the use of metaQuantome statistical and visualization tools on outputs from metatranscriptomics data, which complements the metagenomic and metaproteomic analyses already available. For this, we have developed a tool named MT2MQ ("metatranscriptomics to metaQuantome"), which takes in outputs from the ASaiM metatranscriptomics workflow and transforms them so that the data can be used as an input for comparative statistical analysis and visualization via metaQuantome. We believe that these improvements to metaQuantome will facilitate the use of the software for quantitative metaproteomics and metatranscriptomics and will enable multipoint data analysis. These improvements will take us a step toward integrative multiomic microbiome analysis so as to understand dynamic taxonomic and functional responses of these complex systems in a variety of biological contexts. The updated metaQuantome and MT2MQ are open-source software and are available via the Galaxy Toolshed and GitHub.


Asunto(s)
Microbiota , Proteómica , Espectrometría de Masas , Metagenómica , Programas Informáticos
5.
Environ Microbiol ; 23(4): 2244-2259, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33463871

RESUMEN

Bradyrhizobia are common members of soil microbiomes and known as N2 -fixing symbionts of economically important legumes. Many are also denitrifiers, which can act as sinks or sources for N2 O. Inoculation with compatible rhizobia is often needed for optimal N2 -fixation, but the choice of inoculant may have consequences for N2 O emission. Here, we determined the phylogeny and denitrification capacity of Bradyrhizobium strains, most of them isolated from peanut-nodules. Analyses of genomes and denitrification end-points showed that all were denitrifiers, but only ~1/3 could reduce N2 O. The N2 O-reducing isolates had strong preference for N2 O- over NO3 - -reduction. Such preference was also observed in a study of other bradyrhizobia and tentatively ascribed to competition between the electron pathways to Nap (periplasmic NO3 - reductase) and Nos (N2 O reductase). Another possible explanation is lower abundance of Nap than Nos. Here, proteomics revealed that Nap was instead more abundant than Nos, supporting the hypothesis that the electron pathway to Nos outcompetes that to Nap. In contrast, Paracoccus denitrificans, which has membrane-bond NO3 - reductase (Nar), reduced N2 O and NO3 - simultaneously. We propose that the control at the metabolic level, favouring N2 O reduction over NO3 - reduction, applies also to other denitrifiers carrying Nos and Nap but lacking Nar.


Asunto(s)
Bradyrhizobium , Bradyrhizobium/genética , Desnitrificación , Electrones , Óxido Nitroso , Suelo , Microbiología del Suelo
6.
Appl Environ Microbiol ; 87(19): e0052921, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34319813

RESUMEN

The fish pathogen Aliivibrio (Vibrio) salmonicida LFI1238 is thought to be incapable of utilizing chitin as a nutrient source, since approximately half of the genes representing the chitinolytic pathway are disrupted by insertion sequences. In the present study, we combined a broad set of analytical methods to investigate this hypothesis. Cultivation studies revealed that A. salmonicida grew efficiently on N-acetylglucosamine (GlcNAc) and chitobiose [(GlcNAc)2], the primary soluble products resulting from enzymatic chitin hydrolysis. The bacterium was also able to grow on chitin particles, albeit at a lower rate than on the soluble substrates. The genome of the bacterium contains five disrupted chitinase genes (pseudogenes) and three intact genes encoding a glycoside hydrolase family 18 (GH18) chitinase and two auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenases (LPMOs). Biochemical characterization showed that the chitinase and LPMOs were able to depolymerize both α- and ß-chitin to (GlcNAc)2 and oxidized chitooligosaccharides, respectively. Notably, the chitinase displayed up to 50-fold lower activity than other well-studied chitinases. Deletion of the genes encoding the intact chitinolytic enzymes showed that the chitinase was important for growth on ß-chitin, whereas the LPMO gene deletion variants only showed minor growth defects on this substrate. Finally, proteomic analysis of A. salmonicida LFI1238 growth on ß-chitin showed expression of all three chitinolytic enzymes and, intriguingly, also three of the disrupted chitinases. In conclusion, our results show that A. salmonicida LFI1238 can utilize chitin as a nutrient source and that the GH18 chitinase and the two LPMOs are needed for this ability. IMPORTANCE The ability to utilize chitin as a source of nutrients is important for the survival and spread of marine microbial pathogens in the environment. One such pathogen is Aliivibrio (Vibrio) salmonicida, the causative agent of cold water vibriosis. Due to extensive gene decay, many key enzymes in the chitinolytic pathway have been disrupted, putatively rendering this bacterium incapable of chitin degradation and utilization. In the present study, we demonstrate that A. salmonicida can degrade and metabolize chitin, the most abundant biopolymer in the ocean. Our findings shed new light on the environmental adaption of this fish pathogen.


Asunto(s)
Aliivibrio salmonicida/metabolismo , Quitina/metabolismo , Acetilglucosamina/metabolismo , Aliivibrio salmonicida/genética , Animales , Quitinasas/genética , Quitinasas/metabolismo , Disacáridos/metabolismo , Peces , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Transducción de Señal
7.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33397696

RESUMEN

Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. Herein, we describe a thermostable alginate lyase that belongs to polysaccharide lyase family 17 (PL17) and was derived from an Arctic Mid-Ocean Ridge (AMOR) metagenomics data set. This enzyme, AMOR_PL17A, is a thermostable exolytic oligoalginate lyase (EC 4.2.2.26), which can degrade alginate, poly-ß-d-mannuronate, and poly-α-l-guluronate within a broad range of pHs, temperatures, and salinity conditions. Site-directed mutagenesis showed that tyrosine Y251, previously suggested to act as a catalytic acid, indeed is essential for catalysis, whereas mutation of tyrosine Y446, previously proposed to act as a catalytic base, did not affect enzyme activity. The observed reaction products are protonated and deprotonated forms of the 4,5-unsaturated uronic acid monomer, Δ, two hydrates of DEH (4-deoxy-l-erythro-5-hexulosuronate), which are formed after ring opening, and, finally, two epimers of a 5-member hemiketal called 4-deoxy-d-manno-hexulofuranosidonate (DHF), formed through intramolecular cyclization of hydrated DEH. The detection and nuclear magnetic resonance (NMR) assignment of these hemiketals refine our current understanding of alginate degradation.IMPORTANCE The potential markets for seaweed-derived products and seaweed processing technologies are growing, yet commercial enzyme cocktails for complete conversion of seaweed to fermentable sugars are not available. Such an enzyme cocktail would require the catalytic properties of a variety of different enzymes, where fucoidanases, laminarinases, and cellulases together with endo- and exo-acting alginate lyases would be the key enzymes. Here, we present an exo-acting alginate lyase that efficiently produces monomeric sugars from alginate. Since it is only the second characterized exo-acting alginate lyase capable of degrading alginate at a high industrially relevant temperature (≥60°C), this enzyme may be of great biotechnological and industrial interest. In addition, in-depth NMR-based structural elucidation revealed previously undescribed rearrangement products of the unsaturated monomeric sugars generated from exo-acting lyases. The insight provided by the NMR assignment of these products facilitates future assessment of product formation by alginate lyases.


Asunto(s)
Alginatos/metabolismo , Polisacárido Liasas/metabolismo , ADN de Plantas , Metagenómica , Picea , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polisacárido Liasas/química , Polisacárido Liasas/genética , Temperatura
8.
Bioprocess Biosyst Eng ; 43(4): 723-736, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31883034

RESUMEN

The production of microbial protein in the form of yeast grown on lignocellulosic sugars and nitrogen-rich industrial residues is an attractive approach for reducing dependency on animal and plant protein. Growth media composed of enzymatically saccharified sulfite-pulped spruce wood, enzymatic hydrolysates of poultry by-products and urea were used for the production of single-cell protein. Strains of three different yeast species, Cyberlindnera jadinii, Wickerhamomyces anomalus and Blastobotrys adeninivorans, were cultivated aerobically using repeated fed-batch fermentation up to 25 L scale. Wickerhamomyces anomalus was the most efficient yeast with yields of 0.6 g of cell dry weight and 0.3 g of protein per gram of glucose, with cell and protein productivities of 3.92 g/L/h and 1.87 g/L/h, respectively. Using the conditions developed here for producing W. anomalus, it would take 25 industrial (200 m3) continuously operated fermenters to replace 10% of the fish feed protein used in Norway.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos , Medios de Cultivo , Lignina/química , Picea/química , Levaduras/crecimiento & desarrollo , Animales , Medios de Cultivo/química , Medios de Cultivo/farmacología , Aves de Corral
9.
Adv Exp Med Biol ; 1073: 187-215, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31236844

RESUMEN

Meta-omic techniques have progressed rapidly in the past decade and are frequently used in microbial ecology to study microorganisms in their natural ecosystems independent from culture restrictions. Metaproteomics, in combination with metagenomics, enables quantitative assessment of expressed proteins and pathways from individual members of the consortium. Together, metaproteomics and metagenomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples. Here, we outline key aspects of sample preparation, database generation, and other methodological considerations that are required for successful quantitative metaproteomic analyses and we describe case studies on the integration with metagenomics for enhanced functional output.


Asunto(s)
Metagenómica , Consorcios Microbianos , Proteómica , Manejo de Especímenes/métodos , Proteínas
10.
Biochemistry ; 57(28): 4114-4124, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29901989

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) play a crucial role in the degradation of polysaccharides in biomass by catalyzing powerful oxidative chemistry using only a single copper ion as a cofactor. Despite the natural abundance and importance of these powerful monocopper enzymes, the structural determinants of their functionality have remained largely unknown. We have used site-directed mutagenesis to probe the roles of 13 conserved amino acids located on the flat substrate-binding surface of CBP21, a chitin-active family AA10 LPMO from Serratia marcescens, also known as SmLPMO10A. Single mutations of residues that do not interact with the catalytic copper site, but rather are involved in substrate binding had remarkably strong effects on overall enzyme performance. Analysis of product formation over time showed that these mutations primarily affected enzyme stability. Investigation of protein integrity using proteomics technologies showed that loss of activity was caused by oxidation of essential residues in the enzyme active site. For most enzyme variants, reduced enzyme stability correlated with a reduced level of binding to chitin, suggesting that adhesion to the substrate prevents oxidative off-pathway processes that lead to enzyme inactivation. Thus, the extended and highly evolvable surfaces of LPMOs are tailored for precise multipoint substrate binding, which provides the confinement that is needed to harness and control the remarkable oxidative power of these enzymes. These findings are important for the optimized industrial use of LPMOs as well as the design of LPMO-inspired catalysts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Serratia marcescens/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Quitina/metabolismo , Cobre/química , Cobre/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica , Infecciones por Serratia/microbiología , Serratia marcescens/química , Serratia marcescens/genética , Especificidad por Sustrato
11.
Environ Microbiol ; 19(7): 2701-2714, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28447389

RESUMEN

Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate-active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non-cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV-pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose-degrading enzyme cocktail by 2.4-fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro-slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Pared Celular/metabolismo , Celulosa/metabolismo , Vesículas Extracelulares/enzimología , Fibrobacter/enzimología , Polisacáridos/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Fibrobacter/metabolismo , Glucosa/metabolismo , Hidrólisis , Pectinas/metabolismo , Células Vegetales/metabolismo , Plantas/microbiología , Rumen/microbiología
12.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27815274

RESUMEN

In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and ß-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE: Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the ß-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Consorcios Microbianos , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Biocombustibles , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/metabolismo , Residuos de Alimentos , Redes y Vías Metabólicas , Proteómica , Análisis de Secuencia de ADN
13.
Proteomics ; 15(22): 3765-71, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26316313

RESUMEN

Cancer is a class of diseases characterized by abnormal cell growth and one of the major reasons for human deaths. Proteins are involved in the molecular mechanisms leading to cancer, furthermore they are affected by anti-cancer drugs, and protein biomarkers can be used to diagnose certain cancer types. Therefore, it is important to explore the proteomics background of cancer. In this report, we developed the Cancer Proteomics database to re-interrogate published proteome studies investigating cancer. The database is divided in three sections related to cancer processes, cancer types, and anti-cancer drugs. Currently, the Cancer Proteomics database contains 9778 entries of 4118 proteins extracted from 143 scientific articles covering all three sections: cell death (cancer process), prostate cancer (cancer type) and platinum-based anti-cancer drugs including carboplatin, cisplatin, and oxaliplatin (anti-cancer drugs). The detailed information extracted from the literature includes basic information about the articles (e.g., PubMed ID, authors, journal name, publication year), information about the samples (type, study/reference, prognosis factor), and the proteomics workflow (Subcellular fractionation, protein, and peptide separation, mass spectrometry, quantification). Useful annotations such as hyperlinks to UniProt and PubMed were included. In addition, many filtering options were established as well as export functions. The database is freely available at http://cancerproteomics.uio.no.


Asunto(s)
Bases de Datos de Proteínas , Proteínas de Neoplasias , Neoplasias/metabolismo , Proteoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Muerte Celular , Humanos , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteómica
14.
Immunogenetics ; 67(2): 73-84, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25502872

RESUMEN

Celiac disease is caused by intolerance to cereal gluten proteins, and HLA-DQ molecules are involved in the disease pathogenesis by presentation of gluten peptides to CD4(+) T cells. The α- or ß-chain sharing HLA molecules DQ2.5, DQ2.2, and DQ7.5 display different risks for the disease. It was recently demonstrated that T cells of DQ2.5 and DQ2.2 patients recognize distinct sets of gluten epitopes, suggesting that these two DQ2 variants select different peptides for display. To explore whether this is the case, we performed a comprehensive comparison of the endogenous self-peptides bound to HLA-DQ molecules of B-lymphoblastoid cell lines. Peptides were eluted from affinity-purified HLA molecules of nine cell lines and subjected to quadrupole orbitrap mass spectrometry and MaxQuant software analysis. Altogether, 12,712 endogenous peptides were identified at very different relative abundances. Hierarchical clustering of normalized quantitative data demonstrated significant differences in repertoires of peptides between the three DQ variant molecules. The neural network-based method, NNAlign, was used to identify peptide-binding motifs. The binding motifs of DQ2.5 and DQ7.5 concurred with previously established binding motifs. The binding motif of DQ2.2 was strikingly different from that of DQ2.5 with position P3 being a major anchor having a preference for threonine and serine. This is notable as three recently identified epitopes of gluten recognized by T cells of DQ2.2 celiac patients harbor serine at position P3. This study demonstrates that relative quantitative comparison of endogenous peptides sampled from our protein metabolism by HLA molecules provides clues to understand HLA association with disease.


Asunto(s)
Enfermedad Celíaca/inmunología , Antígenos HLA-DQ/metabolismo , Secuencia de Aminoácidos , Presentación de Antígeno , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Enfermedad Celíaca/genética , Enfermedad Celíaca/metabolismo , Línea Celular Transformada , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Glútenes/química , Glútenes/genética , Glútenes/inmunología , Antígenos HLA-DQ/química , Antígenos HLA-DQ/genética , Herpesvirus Humano 4 , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Mapeo Peptídico , Péptidos/química , Péptidos/inmunología , Dominios y Motivos de Interacción de Proteínas , Proteómica
15.
Rapid Commun Mass Spectrom ; 29(9): 830-6, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26377011

RESUMEN

RATIONALE: Stable isotopic labeling techniques are useful for quantitative proteomics. A cost-effective and convenient method for diethylation by reductive amination was established. The impact using either carbon-13 or deuterium on quantification accuracy and precision was investigated using diethylation. METHODS: We established an effective approach for stable isotope labeling by diethylation of amino groups of peptides. The approach was validated using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nanospray liquid chromatography/electrospray ionization (nanoLC/ESI)-ion trap/orbitrap for mass spectrometric analysis as well as MaxQuant for quantitative data analysis. RESULTS: Reaction conditions with low reagent costs, high yields and minor side reactions were established for diethylation. Furthermore, we showed that diethylation can be applied to up to sixplex labeling. For duplex experiments, we compared diethylation in the analysis of the proteome of HeLa cells using acetaldehyde-(13) C(2)/(12) C(2) and acetaldehyde-(2) H(4)/(1) H(4). Equal numbers of proteins could be identified and quantified; however, (13) C(4)/(12) C(4) -diethylation revealed a lower variance of quantitative peptide ratios within proteins resulting in a higher precision of quantified proteins and less falsely regulated proteins. The results were compared with dimethylation showing minor effects because of the lower number of deuteriums. CONCLUSIONS: The described approach for diethylation of primary amines is a cost-effective and accurate method for up to sixplex relative quantification of proteomes. (13) C(4)/(12) C(4) -diethylation enables duplex quantification based on chemical labeling without using deuterium which reduces identification of false-negatives and increases the quality of the quantification results.


Asunto(s)
Isótopos de Carbono/química , Deuterio/química , Marcaje Isotópico/métodos , Proteoma/análisis , Proteoma/química , Proteómica/métodos , Células HeLa , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos
16.
Mol Cell Proteomics ; 11(2): M111.010447, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22067098

RESUMEN

Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no.


Asunto(s)
Apoptosis/fisiología , Biología Computacional , Bases de Datos de Proteínas , Proteínas/metabolismo , Proteoma/análisis , Animales , Caspasas/metabolismo , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Proteómica , Ratas , Transducción de Señal , Interfaz Usuario-Computador
17.
Bioresour Technol ; 402: 130768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697367

RESUMEN

The bark represents the outer protective layer of trees. It contains high concentrations of antimicrobial extractives, in addition to regular wood polymers. It represents a huge underutilized side stream in forestry, but biotechnological valorization is hampered by a lack of knowledge on microbial bark degradation. Many fungi are efficient lignocellulose degraders, and here, spruce bark degradation by five species, Dichomitus squalens, Rhodonia placenta, Penicillium crustosum, Trichoderma sp. B1, and Trichoderma reesei, was mapped, by continuously analyzing chemical changes in the bark over six months. The study reveals how fungi from different phyla degrade bark using diverse strategies, regarding both wood polymers and extractives, where toxic resin acids were degraded by Basidiomycetes but unmodified/tolerated by Ascomycetes. Proteome analyses of the white-rot D. squalens revealed several proteins, with both known and unknown functions, that were specifically upregulated during growth on bark. This knowledge can accelerate improved utilization of an abundant renewable resource.


Asunto(s)
Picea , Corteza de la Planta , Polisacáridos , Picea/microbiología , Corteza de la Planta/química , Polisacáridos/metabolismo , Hongos/metabolismo , Lignina/metabolismo , Biodegradación Ambiental , Proteínas Fúngicas/metabolismo
18.
J Proteome Res ; 12(5): 2206-13, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23537399

RESUMEN

Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no.


Asunto(s)
Apoptosis , Autofagia , Proteoma/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Células Cultivadas , Bases de Datos de Proteínas , Humanos , Anotación de Secuencia Molecular , Proteómica
19.
Anal Chem ; 85(4): 2478-85, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23316706

RESUMEN

Isobaric peptide termini labeling (IPTL) is based on labeling of both peptide termini with complementary isotopic labels resulting in isobaric peptides. MS/MS analysis after IPTL derivatization produces peptide-specific fragment ions which are distributed throughout the MS/MS spectrum. Thus, several quantification points can be obtained per peptide. In this report, we present triplex-IPTL, a chemical labeling strategy for IPTL allowing the simultaneous quantification of three states within one MS run. For this purpose, dimethylation of the N-terminal amino group followed by dimethylation of lysines was used with different stable isotopes of formaldehyde and cyanoborohydride. Upon LC-MS/MS analysis, the combined samples revealed three corresponding isotopic fragment ion series reflecting quantitatively the peptide ratios. To support this multiplexing labeling strategy, we have further developed the data analysis tool IsobariQ and included multidimensional VSN normalization, statistical inference, and graphical visualization of triplex-IPTL data and clustering of protein profiling patterns. The power of the triplex-IPTL approach in combination with IsobariQ was demonstrated through temporal profiling of HeLa cells incubated with the kinesin Eg5 inhibitor S-Trityl-l-cysteine (STLC). As a result, clusters of quantified proteins were found by their ratio profiles which corresponded well to their gene ontology association in mitotic arrest and cell death, respectively.


Asunto(s)
Péptidos/análisis , Espectrometría de Masas en Tándem , Apoptosis/efectos de los fármacos , Isótopos de Carbono/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Cisteína/farmacología , Deuterio/química , Células HeLa , Humanos , Marcaje Isotópico , Péptidos/química
20.
Mol Cell Proteomics ; 10(2): M110.003376, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21048195

RESUMEN

Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(X(n= 3-7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.


Asunto(s)
Núcleo Celular/metabolismo , Neomicina/farmacología , Fosfatidilinositol 4,5-Difosfato/química , Proteómica/métodos , Secuencias de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Células Jurkat , Fosfatidilinositoles/química , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA