Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Exp Bot ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808567

RESUMEN

Hydrogen sulfide regulates essential plant processes, including adaptation responses to stress situations, and the best characterized mechanism of action of sulfide consists of the posttranslational modification of persulfidation. In this study, we reveal the first persulfidation proteome described in rice including 3443 different persulfidated proteins that participate in a broad range of biological processes and metabolic pathways. In addition, comparative proteomics revealed specific proteins involved in sulfide signaling during drought responses. Several proteins involved in the maintenance of cellular redox homeostasis, the TCA cycle and energy-related pathways, and ion transmembrane transport and cellular water homeostasis, highlighting the aquaporin family, showed the highest differential levels of persulfidation. We revealed that water transport activity is regulated by sulfide which correlates to an increasing level of persulfidation of aquaporins. Our findings emphasize the impact of persulfidation on total ATP levels, fatty acid composition, ROS levels, antioxidant enzymatic activities, and relative water content. Interestingly, the persulfidation role on aquaporin transport activity as an adaptation response in rice differs from the current knowledge in Arabidopsis, which emphasizes the distinct role of sulfide improving rice tolerance to drought.

2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975948

RESUMEN

Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule, which recently has been implicated in autophagy regulation in both plants and mammals through persulfidation of specific targets. Persulfidation has been suggested as the molecular mechanism through which sulfide regulates autophagy in plant cells. ATG18a is a core autophagy component that is required for bulk autophagy and also for reticulophagy during endoplasmic reticulum (ER) stress. In this research, we revealed the role of sulfide in plant ER stress responses as a negative regulator of autophagy. We demonstrate that sulfide regulates ATG18a phospholipid-binding activity by reversible persulfidation at Cys103, and that this modification activates ATG18a binding capacity to specific phospholipids in a reversible manner. Our findings strongly suggest that persulfidation of ATG18a at C103 regulates autophagy under ER stress, and that the impairment of persulfidation affects both the number and size of autophagosomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/genética , Estrés del Retículo Endoplásmico , Sulfuro de Hidrógeno/metabolismo , Procesamiento Proteico-Postraduccional , Sulfuros/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal
3.
New Phytol ; 238(4): 1431-1445, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840421

RESUMEN

Hydrogen sulfide is a signaling molecule in plants that regulates essential biological processes through protein persulfidation. However, little is known about sulfide-mediated regulation in relation to photorespiration. Here, we performed label-free quantitative proteomic analysis and observed a high impact on protein persulfidation levels when plants grown under nonphotorespiratory conditions were transferred to air, with 98.7% of the identified proteins being more persulfidated under suppressed photorespiration. Interestingly, a higher level of reactive oxygen species (ROS) was detected under nonphotorespiratory conditions. Analysis of the effect of sulfide on aspects associated with non- or photorespiratory growth conditions has demonstrated that it protects plants grown under suppressed photorespiration. Thus, sulfide amends the imbalance of carbon/nitrogen and restores ATP levels to concentrations like those of air-grown plants; balances the high level of ROS in plants under nonphotorespiratory conditions to reach a cellular redox state similar to that in air-grown plants; and regulates stomatal closure, to decrease the high guard cell ROS levels and induce stomatal aperture. In this way, sulfide signals the CO2 -dependent stomata movement, in the opposite direction of the established abscisic acid-dependent movement. Our findings suggest that the high persulfidation level under suppressed photorespiration reveals an essential role of sulfide signaling under these conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sulfuro de Hidrógeno , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Proteínas de Arabidopsis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuros/farmacología , Sulfuros/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Estomas de Plantas/fisiología
4.
J Exp Bot ; 74(15): 4654-4669, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37148339

RESUMEN

Hydrogen sulfide (H2S) is a signaling molecule that regulates essential plant processes. In this study, the role of H2S during drought was analysed, focusing on the underlying mechanism. Pretreatments with H2S before imposing drought on plants substantially improved the characteristic stressed phenotypes under drought and decreased the levels of typical biochemical stress markers such as anthocyanin, proline, and hydrogen peroxide. H2S also regulated drought-responsive genes and amino acid metabolism, and repressed drought-induced bulk autophagy and protein ubiquitination, demonstrating the protective effects of H2S pretreatment. Quantitative proteomic analysis identified 887 significantly different persulfidated proteins between control and drought stress plants. Bioinformatic analyses of the proteins more persulfidated in drought revealed that the most enriched biological processes were cellular response to oxidative stress and hydrogen peroxide catabolism. Protein degradation, abiotic stress responses, and the phenylpropanoid pathway were also highlighted, suggesting the importance of persulfidation in coping with drought-induced stress. Our findings emphasize the role of H2S as a promoter of enhanced tolerance to drought, enabling plants to respond more rapidly and efficiently. Furthermore, the main role of protein persulfidation in alleviating reactive oxygen species accumulation and balancing redox homeostasis under drought stress is highlighted.


Asunto(s)
Arabidopsis , Sulfuro de Hidrógeno , Arabidopsis/metabolismo , Sequías , Peróxido de Hidrógeno/metabolismo , Proteómica , Sulfuros/farmacología , Sulfuro de Hidrógeno/metabolismo , Plantas/metabolismo , Estrés Fisiológico/genética
5.
J Exp Bot ; 74(19): 6023-6039, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37486799

RESUMEN

Photorespiration has been considered a 'futile' cycle in C3 plants, necessary to detoxify and recycle the metabolites generated by the oxygenating activity of Rubisco. However, several reports indicate that this metabolic route plays a fundamental role in plant metabolism and constitutes a very interesting research topic. Many open questions still remain with regard to photorespiration. One of these questions is how the photorespiratory process is regulated in plants and what factors contribute to this regulation. In this review, we summarize recent advances in the regulation of the photorespiratory pathway with a special focus on the transcriptional and post-translational regulation of photorespiration and the interconnections of this process with nitrogen and sulfur metabolism. Recent findings on sulfide signaling and protein persulfidation are also described.


Asunto(s)
Fotosíntesis , Plantas , Fotosíntesis/fisiología , Plantas/genética , Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
6.
Plant Cell ; 32(12): 3902-3920, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037147

RESUMEN

Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis (Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Proteasas de Cisteína/metabolismo , Proteómica , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteasas de Cisteína/genética , Nitrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sulfuros/metabolismo
7.
J Exp Bot ; 72(16): 5893-5904, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34077530

RESUMEN

Hydrogen sulfide (H2S) is a signaling molecule that regulates critical processes and allows plants to adapt to adverse conditions. The molecular mechanism underlying H2S action relies on its chemical reactivity, and the most-well characterized mechanism is persulfidation, which involves the modification of protein thiol groups, resulting in the formation of persulfide groups. This modification causes a change of protein function, altering catalytic activity or intracellular location and inducing important physiological effects. H2S cannot react directly with thiols but instead can react with oxidized cysteine residues; therefore, H2O2 signaling through sulfenylation is required for persulfidation. A comparative study performed in this review reveals 82% identity between sulfenylome and persulfidome. With regard to abscisic acid (ABA) signaling, widespread evidence shows an interconnection between H2S and ABA in the plant response to environmental stress. Proteomic analyses have revealed persulfidation of several proteins involved in the ABA signaling network and have shown that persulfidation is triggered in response to ABA. In guard cells, a complex interaction of H2S and ABA signaling has also been described, and the persulfidation of specific signaling components seems to be the underlying mechanism.


Asunto(s)
Sulfuro de Hidrógeno , Cisteína , Peróxido de Hidrógeno , Proteómica , Transducción de Señal
8.
J Exp Bot ; 70(16): 4251-4265, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31087094

RESUMEN

Two cysteine metabolism-related molecules, hydrogen sulfide and hydrogen cyanide, which are considered toxic, have now been considered as signaling molecules. Hydrogen sulfide is produced in chloroplasts through the activity of sulfite reductase and in the cytosol and mitochondria by the action of sulfide-generating enzymes, and regulates/affects essential plant processes such as plant adaptation, development, photosynthesis, autophagy, and stomatal movement, where interplay with other signaling molecules occurs. The mechanism of action of sulfide, which modifies protein cysteine thiols to form persulfides, is related to its chemical features. This post-translational modification, called persulfidation, could play a protective role for thiols against oxidative damage. Hydrogen cyanide is produced during the biosynthesis of ethylene and camalexin in non-cyanogenic plants, and is detoxified by the action of sulfur-related enzymes. Cyanide functions include the breaking of seed dormancy, modifying the plant responses to biotic stress, and inhibition of root hair elongation. The mode of action of cyanide is under investigation, although it has recently been demonstrated to perform post-translational modification of protein cysteine thiols to form thiocyanate, a process called S-cyanylation. Therefore, the signaling roles of sulfide and most probably of cyanide are performed through the modification of specific cysteine residues, altering protein functions.


Asunto(s)
Arabidopsis/metabolismo , Cianuros/metabolismo , Sulfuro de Hidrógeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal
10.
Plant Cell Physiol ; 58(6): 983-992, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444344

RESUMEN

Hydrogen sulfide is an important signaling molecule comparable with nitric oxide and hydrogen peroxide in plants. The underlying mechanism of its action is unknown, although it has been proposed to be S-sulfhydration. This post-translational modification converts the thiol groups of cysteines within proteins to persulfides, resulting in functional changes of the proteins. In Arabidopsis thaliana, S-sulfhydrated proteins have been identified, including the cytosolic isoforms of glyceraldehyde-3-phosphate dehydrogenase GapC1 and GapC2. In this work, we studied the regulation of sulfide on the subcellular localization of these proteins using two different approaches. We generated GapC1-green fluorescent protein (GFP) and GapC2-GFP transgenic plants in both the wild type and the des1 mutant defective in the l-cysteine desulfhydrase DES1, responsible for the generation of sulfide in the cytosol. The GFP signal was detected in the cytoplasm and the nucleus of epidermal cells, although with reduced nuclear localization in des1 compared with the wild type, and exogenous sulfide treatment resulted in similar signals in nuclei in both backgrounds. The second approach consisted of the immunoblot analysis of the GapC endogenous proteins in enriched nuclear and cytosolic protein extracts, and similar results were obtained. A significant reduction in the total amount of GapC in des1 in comparison with the wild type was determined and exogenous sulfide significantly increased the protein levels in the nuclei in both plants, with a stronger response in the wild type. Moreover, the presence of an S-sulfhydrated cysteine residue on GapC1 was demonstrated by mass spectrometry. We conclude that sulfide enhances the nuclear localization of glyceraldehyde-3-phosphate dehydrogenase.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Núcleo Celular/enzimología , Citosol/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Sulfuro de Hidrógeno/farmacología , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Espectrometría de Masas , Procesamiento Proteico-Postraduccional
11.
J Exp Bot ; 68(17): 4915-4927, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28992305

RESUMEN

Hydrogen sulfide-mediated signaling pathways regulate many physiological and pathophysiological processes in mammalian and plant systems. The molecular mechanism by which hydrogen sulfide exerts its action involves the post-translational modification of cysteine residues to form a persulfidated thiol motif, a process called protein persulfidation. We have developed a comparative and quantitative proteomic analysis approach for the detection of endogenous persulfidated proteins in wild-type Arabidopsis and L-CYSTEINE DESULFHYDRASE 1 mutant leaves using the tag-switch method. The 2015 identified persulfidated proteins were isolated from plants grown under controlled conditions, and therefore, at least 5% of the entire Arabidopsis proteome may undergo persulfidation under baseline conditions. Bioinformatic analysis revealed that persulfidated cysteines participate in a wide range of biological functions, regulating important processes such as carbon metabolism, plant responses to abiotic and biotic stresses, plant growth and development, and RNA translation. Quantitative analysis in both genetic backgrounds reveals that protein persulfidation is mainly involved in primary metabolic pathways such as the tricarboxylic acid cycle, glycolysis, and the Calvin cycle, suggesting that this protein modification is a new regulatory component in these pathways.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteómica/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cistationina gamma-Liasa/genética , Mutación , Proteoma/metabolismo , Sulfuros
12.
Plant Physiol ; 168(1): 334-42, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25810097

RESUMEN

Hydrogen sulfide is a highly reactive molecule that is currently accepted as a signaling compound. This molecule is as important as carbon monoxide in mammals and hydrogen peroxide in plants, as well as nitric oxide in both eukaryotic systems. Although many studies have been conducted on the physiological effects of hydrogen sulfide, the underlying mechanisms are poorly understood. One of the proposed mechanisms involves the posttranslational modification of protein cysteine residues, a process called S-sulfhydration. In this work, a modified biotin switch method was used for the detection of Arabidopsis (Arabidopsis thaliana) proteins modified by S-sulfhydration under physiological conditions. The presence of an S-sulfhydration-modified cysteine residue on cytosolic ascorbate peroxidase was demonstrated using liquid chromatography-tandem mass spectrometry analysis, and a total of 106 S-sulfhydrated proteins were identified. Immunoblot and enzyme activity analyses of some of these proteins showed that the sulfide added through S-sulfhydration reversibly regulates the functions of plant proteins in a manner similar to that described in mammalian systems.


Asunto(s)
Arabidopsis/metabolismo , Cisteína/metabolismo , Procesamiento Proteico-Postraduccional , Sulfuros/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Ascorbato Peroxidasas/química , Biotina/metabolismo , Citosol/metabolismo , Immunoblotting , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo
13.
Amino Acids ; 47(10): 2155-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24990521

RESUMEN

Cysteine (Cys) is the first organic compound containing reduced sulfur that is synthesized in the last stage of plant photosynthetic assimilation of sulfate. It is a very important metabolite not only because it is crucial for the structure, function and regulation of proteins but also because it is the precursor molecule of an enormous number of sulfur-containing metabolites essential for plant health and development. The biosynthesis of Cys is accomplished by the sequential reaction of serine acetyltransferase (SAT) and O-acetylserine(thiol)synthase (OASTL). In Arabidopsis thaliana, the analysis of specific mutants of members of the SAT and OASTL families has demonstrated that the cytosol is the compartment where the bulk of Cys synthesis takes place and that the cytosolic OASTL enzyme OAS-A1 is the responsible enzyme. Another member of the OASTL family is DES1, a novel L-cysteine desulfhydrase that catalyzes the desulfuration of Cys to produce sulfide, thus acting in a manner opposite to that of OAS-A1. Detailed studies of the oas-a1 and des1 null mutants have revealed the involvement of the DES1 and OAS-A1 proteins in coordinate regulation of Cys homeostasis and the generation of sulfide in the cytosol for signaling purposes. Thus, the levels of Cys in the cytosol strongly affect plant responses to both abiotic and biotic stress conditions, while sulfide specifically generated from the degradation of Cys negatively regulates autophagy induced in different situations. In conclusion, modulation of the levels of Cys and sulfide is likely critical for plant performance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Transducción de Señal , Sulfuros/metabolismo , Homeostasis
14.
J Biol Chem ; 288(36): 25986-25994, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23902765

RESUMEN

T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms.


Asunto(s)
Proteínas de Unión a Poli(A)/química , ARN Mensajero/química , Secuencias de Aminoácidos , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas/fisiología , Estructura Terciaria de Proteína , Empalme del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Antígeno Intracelular 1 de las Células T
15.
RNA Biol ; 11(6): 766-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24824036

RESUMEN

T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.


Asunto(s)
Motivos de Nucleótidos , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , Secuencia de Bases , Sitios de Unión , Secuencia Rica en GC , Humanos , Resonancia Magnética Nuclear Biomolecular , Posición Específica de Matrices de Puntuación
16.
Antioxidants (Basel) ; 13(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38929158

RESUMEN

Protein persulfidation is a thiol-based oxidative posttranslational modification (oxiPTM) that involves the modification of susceptible cysteine thiol groups present in peptides and proteins through hydrogen sulfide (H2S), thus affecting their function. Using sweet pepper (Capsicum annuum L.) fruits as a model material at different stages of ripening (immature green and ripe red), endogenous persulfidated proteins (persulfidome) were labeled using the dimedone switch method and identified using liquid chromatography and mass spectrometry analysis (LC-MS/MS). A total of 891 persulfidated proteins were found in pepper fruits, either immature green or ripe red. Among these, 370 proteins were exclusively present in green pepper, 237 proteins were exclusively present in red pepper, and 284 proteins were shared between both stages of ripening. A comparative analysis of the pepper persulfidome with that described in Arabidopsis leaves allowed the identification of 25% of common proteins. Among these proteins, glutathione reductase (GR) and leucine aminopeptidase (LAP) were selected to evaluate the effect of persulfidation using an in vitro approach. GR activity was unaffected, whereas LAP activity increased by 3-fold after persulfidation. Furthermore, this effect was reverted through treatment with dithiothreitol (DTT). To our knowledge, this is the first persulfidome described in fruits, which opens new avenues to study H2S metabolism. Additionally, the results obtained lead us to hypothesize that LAP could be involved in glutathione (GSH) recycling in pepper fruits.

17.
Eur Biophys J ; 41(7): 597-605, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22706953

RESUMEN

Human antigen R (HuR) is a multitasking RNA binding protein involved in posttranscriptional regulation by recognizing adenine- and uracile-rich elements placed at the 3'-untranslated regions of messenger RNAs (mRNAs). The modular architecture of the protein, which consists of two N-terminal RNA recognition motifs (RRMs) in tandem spaced from a third one by a nuclear-cytoplasmic shuttling sequence, controls the stability of many mRNA targets, as well as their translation rates. A higher level of regulation comes from the fact that both localization and function of HuR are strictly regulated by phosphorylation. Here, we report how the thermal stability of RRM2 is decreased by the presence of RRM1, indicating that both domains are interacting in solution. In addition, even though no significant structural changes are observed among mutants of HuR RRM12 mimicking phosphorylated species, slight differences in stability are appreciable, which may explain the RNA binding activity of HuR.


Asunto(s)
Proteínas ELAV/química , Dominios y Motivos de Interacción de Proteínas , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosforilación , Estabilidad Proteica , Temperatura
18.
Antioxidants (Basel) ; 11(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35204209

RESUMEN

Autophagy is a degradative conserved process in eukaryotes to recycle unwanted cellular protein aggregates and damaged organelles. Autophagy plays an important role under normal physiological conditions in multiple biological processes, but it is induced under cellular stress. Therefore, it needs to be tightly regulated to respond to different cellular stimuli. In this review, the regulation of autophagy by hydrogen sulfide is described in both animal and plant systems. The underlying mechanism of action of sulfide is deciphered as the persulfidation of specific targets, regulating the pro- or anti-autophagic role of sulfide with a cell survival outcome. This review aims to highlight the importance of sulfide and persulfidation in autophagy regulation comparing the knowledge available in mammals and plants.

19.
FEBS Lett ; 596(17): 2186-2197, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35735749

RESUMEN

Hydrogen sulfide is a signalling molecule with a well-established impact on both plant and animal physiology. Intense investigation into the regulation of autophagy by sulfide in Arabidopsis thaliana has revealed that the post-translational modification of persulfidation/S-sulfhydration plays a key role. In this review focused on plants, we discuss the nature of the sulfide molecule involved in the regulation of autophagy, the final outcome of this modification and the persulfidated autophagy proteins identified so far. A detailed outline of the actual knowledge of the regulation mechanism of the autophagy-related proteins ATG4a and ATG18a from Arabidopsis by sulfide is also included. This information will be instrumental for furthering research on the regulation of autophagy by sulfide.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sulfuro de Hidrógeno , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Plantas/metabolismo , Sulfuros/metabolismo
20.
Autophagy ; 18(3): 695-697, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34097571

RESUMEN

In this commentary, we highlight the findings described in a recent paper regarding the mechanism of H2S regulation of macroautophagy/autophagy in mammalian cells and discuss the similarities/divergencies with plant cells. The main outcome is that the posttranslational modification of thiol groups of cysteine residues to form persulfides is a conserved molecular mechanism.


Asunto(s)
Sulfuro de Hidrógeno , Animales , Autofagia , Cisteína/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mamíferos/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Sulfuros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA