Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Med Vet Entomol ; 37(4): 631-646, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37401856

RESUMEN

Pest management in farm animals is an important action to contain economic damage to livestock production and prevent transmission of severe diseases to the stock. The use of chemical insecticides is still the most common approach followed by farmers; however, avoiding possible toxic effects on animals is a fundamental task for pest control measures compatible with animal well-being. Moreover, legal constraints and insurgence of resistance by target species to the available insecticidal compounds are increasingly complicating farmers' operations. Alternatives to chemical pesticides have been explored with some promising results in the area of biological control or the use of natural products as sprays. The application of RNA interference techniques has enabled the production of new means of pest control in agriculture, and it is opening a promising avenue for controlling arthropod pests of livestock. Transcript depletion of specific target genes of the recipient organisms is based on the action of double-strand RNAs (dsRNA) capable of impairing the production of fundamental proteins. Their mode of action, based on the specific recognition of short genomic sequences, is expected to be highly selective towards non-target organisms potentially exposed; in addition, there are physical and chemical barriers to dsRNA uptake by mammalian cells that render these products practically innocuous for higher animals. Summarising existing literature on gene silencing for main taxa of arthropod pests of livestock (Acarina, Diptera, Blattoidea), this review explores the perspectives of practical applications of dsRNA-based pesticides against the main pests of farm animals. Knowledge gaps are summarised to stimulate additional research in this area.


Asunto(s)
Artrópodos , Insecticidas , Plaguicidas , Animales , Ganado , Granjas , Interferencia de ARN , Mamíferos
2.
Crit Rev Biotechnol ; 42(2): 201-219, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34154477

RESUMEN

Since 1998, genetically engineered Bt maize varieties expressing the insecticidal Cry1Ab protein (i.e. event MON 810) have been grown in the European Union (EU), mainly in Spain. These varieties confer resistance against the European and Mediterranean corn borer (ECB and MCB), which are the major lepidopteran maize pests in the EU, particularly in Mediterranean areas. However, widespread, repeated and exclusive use of Bt maize is anticipated to increase the risk of Cry1Ab resistance to evolve in corn borer populations. To delay resistance evolution, typically, refuges of non-Bt maize are planted near or adjacent to, or within Bt maize fields. Moreover, changes in Cry1Ab susceptibility in field populations of corn borers and unexpected damage to maize MON 810, due to corn borers, are monitored on an annual basis. After two decades of Bt maize cultivation in Spain, neither resistant corn borer populations nor farmer complaints on unexpected field damage have been reported. However, whether the resistance monitoring strategy followed in Spain, currently based on discriminating concentration bioassays, is sufficiently sensitive to timely detect early warning signs of resistance in the field remains a point of contention. Moreover, the Cry1Ab resistance allele frequency to Bt maize, which has recently been estimated in MCB populations from north-eastern Spain, might exceed that recommended for successful resistance management. To ensure Bt maize durability in Spain, it is key that adequate resistance management approaches, including monitoring of resistance and farmer compliance with refuge requirements, continue to be implemented and are incorporated in integrated pest management schemes.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Resistencia a los Insecticidas/genética , Larva , Control Biológico de Vectores , Plantas Modificadas Genéticamente/genética , España , Zea mays/genética
3.
Ecotoxicol Environ Saf ; 208: 111676, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396008

RESUMEN

The environmental risk assessment (ERA) for genetically modified plants (GMPs) is a prerequisite for commercial approval of these new varieties according to regulatory systems worldwide. The first country to regulate GM crops was the USA and the issue of possible environmental impacts was based on the principles used in risk assessment of pesticides. Two main pillars of this approach are the use of surrogate species for testing effects on non-target organisms using a tiered assessment with clear thresholds to indicate the need to move between tiers. The latest EFSA guidance document on ERA of Genetically Modified Organisms considers specifically the receiving environment in preparation of ERA for commercial cultivation of GMPs. According to existing guidelines in the EU, the receiving environment is defined by three mutually interacting components: the characteristics of the environmental stressor (i.e. the GM plant), the bio-geographical regions where the commercial release of the crop is expected and the agricultural systems therein. Difference in agronomic and ecological conditions (e.g. use of different varieties, vegetation of adjacent areas, non-target species assemblages, sensitivity of local species to the stressors) suggests that explicit considerations of the receiving environments are necessary. Results from field experiments indicate that differences in cultivation practices, e.g. the herbicide regime used on herbicide-tolerant GM crops, may induce direct and indirect effects on wild plant distribution and abundance, with consequent repercussions on food webs based on these plants. Moreover, ecological literature indicates that the concept of surrogate species has clear limitations if applied broadly to any ERA. Starting from case studies regarding GMPs, this paper discusses some ecological and agronomic characteristics of agro-ecosystems, which have implications in the elaboration of both hazard and exposure analyses during ERA. The species selection approach indicated in the EFSA Guidance Document and the consideration of the area(s) of the expected release of the new variety may provide the basis to an ecologically sound ERA for a range of environmental stressors. The quality of the data that become available for risk managers with this approach may support a more transparent and dependable ERA and risk management for GMPs as well as for other potential environmental stressors in agro-ecosystems.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Inocuidad de los Alimentos/métodos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Productos Agrícolas/genética , Ecosistema , Monitoreo del Ambiente/legislación & jurisprudencia , Publicaciones Gubernamentales como Asunto , Guías como Asunto , Plaguicidas/toxicidad , Medición de Riesgo/métodos
4.
Pest Manag Sci ; 77(6): 2659-2666, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33470515

RESUMEN

Bee pollinators are an important guild delivering a fundamental input to European agriculture due to the ecological service they provide to crops in addition to the direct economic revenues from apiculture. Bee populations are declining in Europe as a result of the effects of several environmental stressors, both natural and of anthropic origin. Efforts are ongoing in the European Union (EU) to improve monitoring and management of pollinator populations to arrest further declines. Genetically modified (GM) crops are currently cultivated in a limited area in Europe, and an environmental risk assessment (ERA) is required prior to their authorization for cultivation. The possible impacts of GM crops on pollinators are deemed relevant for the ERA. Existing ecotoxicological studies indicate that traits currently expressed in insect-resistant GM plants are unlikely to represent a risk for pollinators. However, new mechanisms of insect resistance are being introduced into GM plants, including novel combinations of Cry toxins and double strand RNA (dsRNA), and an ERA is required to consider lethal and sublethal effects of these new products on nontarget species, including insect pollinators. The evaluation of indirect effects linked to the changes in management practices (e.g. for herbicide-tolerant GM crops) is an important component of EU regulations and a requirement for ERA. This paper reviews current approaches used to test the sensitivity of pollinators to GM plants and their products to determine whether sufficient data are being provided on novel GM plants to satisfy EU risk assessment requirements. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Contención de Riesgos Biológicos , Ecosistema , Animales , Abejas , Europa (Continente) , Unión Europea , Plantas Modificadas Genéticamente/genética
5.
Pest Manag Sci ; 76(3): 841-845, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31743573

RESUMEN

Facing current climate challenges and drastically reduced chemical options for plant protection, the exploitation of RNA interference (RNAi) as an agricultural biotechnology tool has unveiled possible new solutions to the global problems of agricultural losses caused by pests and other biotic and abiotic stresses. While the use of RNAi as a tool in agriculture is still limited to a few transgenic crops, and only adopted in restricted parts of the world, scientists and industry are already seeking innovations in leveraging and exploiting the potential of RNAi in the form of RNA-based biocontrol compounds for external applications. Here, we highlight the expanding research and development pipeline, commercial landscape and regulatory environment surrounding the pursuit of RNA-based biocontrol compounds with improved environmental profiles. The commitments of well-established agrochemical companies to invest in research endeavours and the role of start-up companies are crucial for the successful development of practical applications for these compounds. Additionally, the availability of standardized guidelines to tackle regulatory ambiguities surrounding RNA-based biocontrol compounds will help to facilitate the entire commercialization process. Finally, communication to create awareness and public acceptance will be key to the deployment of these compounds. © 2019 Society of Chemical Industry.


Asunto(s)
Productos Agrícolas , Agricultura , Biotecnología , ARN , Interferencia de ARN
6.
Front Plant Sci ; 11: 940, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670333

RESUMEN

The use of RNA interference (RNAi) enables the silencing of target genes in plants or plant-dwelling organisms, through the production of double stranded RNA (dsRNA) resulting in altered plant characteristics. Expression of properly synthesized dsRNAs in plants can lead to improved crop quality characteristics or exploit new mechanisms with activity against plant pests and pathogens. Genetically modified (GM) crops exhibiting resistance to viruses or insects via expression of dsRNA have received authorization for cultivation outside Europe. Some products derived from RNAi plants have received a favourable opinion from the European Food Safety Authority (EFSA) for import and processing in the European Union (EU). The authorization process in the EU requires applicants to produce a risk assessment considering food/feed and environmental safety aspects of living organisms or their derived food and feed products. The present paper discusses the main aspects of the safety assessment (comparative assessment, molecular characterization, toxicological assessment, nutritional assessment, gene transfer, interaction with target and non-target organisms) for GM plants expressing dsRNA, according to the guidelines of EFSA. Food/feed safety assessment of products from RNAi plants is expected to be simplified, in the light of the consideration that no novel proteins are produced. Therefore, some of the data requirements for risk assessment do not apply to these cases, and the comparative compositional analysis becomes the main source of evidence for food/feed safety of RNAi plants. During environmental risk assessment, the analysis of dsRNA expression levels of the GM trait, and the data concerning the observable effects on non-target organisms (NTO) will provide the necessary evidence for ensuring safety of species exposed to RNAi plants. Bioinformatics may provide support to risk assessment by selecting target gene sequences with low similarity to the genome of NTOs possibly exposed to dsRNA. The analysis of these topics in risk assessment indicates that the science-based regulatory process in Europe is considered to be applicable to GM RNAi plants, therefore the evaluation of their safety can be effectively conducted without further modifications. Outcomes from the present paper offer suggestions for consideration in future updates of the EFSA Guidance documents on risk assessment of GM organisms.

8.
Environ Entomol ; 38(2): 293-306, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19389277

RESUMEN

This review uses a data-driven, quantitative method to summarize the published, peer-reviewed literature about the impact of genetically modified (GM) plants on arthropod natural enemies in laboratory experiments. The method is similar to meta-analysis, and, in contrast to a simple author-vote counting method used by several earlier reviews, gives an objective, data-driven summary of existing knowledge about these effects. Significantly more non-neutral responses were observed than expected at random in 75% of the comparisons of natural enemy groups and response classes. These observations indicate that Cry toxins and proteinase inhibitors often have non-neutral effects on natural enemies. This synthesis identifies a continued bias toward studies on a few predator species, especially the green lacewing, Chrysoperla carnea Stephens, which may be more sensitive to GM insecticidal plants (16.8% of the quantified parameter responses were significantly negative) than predators in general (10.9% significantly negative effects without C. carnea). Parasitoids were more susceptible than predators to the effects of both Cry toxins and proteinase inhibitors, with fewer positive effects (18.0%, significant and nonsignificant positive effects combined) than negative ones (66.1%, significant and nonsignificant negative effects combined). GM plants can have a positive effect on natural enemies (4.8% of responses were significantly positive), although significant negative (21.2%) effects were more common. Although there are data on 48 natural enemy species, the database is still far from adequate to predict the effect of a Bt toxin or proteinase inhibitor on natural enemies.


Asunto(s)
Artrópodos , Proteínas Bacterianas/genética , Productos Agrícolas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Control de Insectos/métodos , Insecticidas , Plantas Modificadas Genéticamente , Animales , Artrópodos/crecimiento & desarrollo , Toxinas de Bacillus thuringiensis , Bases de Datos Factuales , Larva , Especificidad de la Especie
9.
Ecol Evol ; 9(5): 2863-2882, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30891222

RESUMEN

This paper considers the statistical analysis of entomological count data from field experiments with genetically modified (GM) plants. Such trials are carried out to assess environmental safety. Potential effects on nontarget organisms (NTOs), as indicators of biodiversity, are investigated. The European Food Safety Authority (EFSA) gives broad guidance on the environmental risk assessment (ERA) of GM plants. Field experiments must contain suitable comparator crops as a benchmark for the assessment of designated endpoints. In this paper, a detailed protocol is proposed to perform data analysis for the purpose of assessing environmental safety. The protocol includes the specification of a list of endpoints and their hierarchical relations, the specification of intended levels of data analysis, and the specification of provisional limits of concern to decide on the need for further investigation. The protocol emphasizes a graphical representation of estimates and confidence intervals for the ratio of mean abundances for the GM plant and its comparator crop. Interpretation relies mainly on equivalence testing in which confidence intervals are compared with the limits of concern. The proposed methodology is illustrated with entomological count data resulting from multiyear, multilocation field trials. A cisgenically modified potato line (with enhanced resistance to late blight disease) was compared to the original conventional potato variety in the Netherlands and Ireland in two successive years (2013, 2014). It is shown that the protocol encompasses alternative schemes for safety assessment resulting from different research questions and/or expert choices. Graphical displays of equivalence testing at several hierarchical levels and their interpretation are presented for one of these schemes. The proposed approaches should be of help in the ERA of GM or other novel plants.

10.
Insect Sci ; 25(4): 549-561, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29569843

RESUMEN

Environmental impacts of genetically modified crops are mandatorily assessed during their premarket phase. One of the areas of concern is the possible impact on nontarget organisms. Crops expressing Cry toxins might affect Lepidoptera larvae living outside cultivated fields, through pollen deposition on wild plants, which constitute their food source. While pollen toxicity varies among different events, possible exposure of nontarget species depends on the agro-environmental conditions. This study was conducted in two protected areas in Italy, characterized by different climatic conditions, where many Lepidoptera species thrive in proximity to maize cultivations. To estimate the possible exposure in absence of the actual stressor (e.g., Cry1-expressing maize plants), we conducted a two-year field survey of butterflies and weeds. Indicator species were selected-Aglais (Inachis) io in the Northern site and Vanessa cardui in the Southern site-and their phenology was investigated. Pollen dispersal from maize fields was measured by collection in Petri dishes. Duration and frequency of exposure was defined by the overlap between pollen emission and presence of larvae on host plants. Different risk scenarios are expected in the two regions: highest exposure is foreseen for A. io in the Northern site, while minimal exposure is estimated for V. cardui in the Southern site. In the latter case, locally grown maize cultivars flower in mid-summer in coincidence with an aestivation period for several butterfly species due to hot and dry conditions. Moreover, host plants of V. cardui are at the end of their life cycle thus limiting food availability.


Asunto(s)
Mariposas Diurnas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Polen , Medición de Riesgo , Zea mays/genética , Animales , Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Italia , Larva , Malezas
11.
Environ Entomol ; 36(1): 213-27, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17349136

RESUMEN

The environmental impact of genetically modified (GM) plants in experimental fields has been examined in several ways, in particular with respect to the dynamics of specific nontarget organisms. The approach of sampling for biodiversity in agroecosystems to compare complex patterns could also be useful in studying potential disruptions caused by GM crops. In this study, we set up replicated field plots of Bt-expressing eggplants and near isogenic untransformed eggplants as a control. We monitored the presence and abundance of herbivore and predator arthropods in weekly visual samplings of the plant canopy for three growing seasons (2001-2003). Insect species were pooled in organismal taxonomic units (OTUs); three multivariate methods were used to compare species assemblage as an estimate of insect biodiversity. This multistep statistical approach proved to be efficient in recognizing association patterns, as evidenced by the data for the target species Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) clearly showing a significant association with the control plots. All the analyses indicate a comparable species assemblage between transgenic and near isogenic eggplant areas. Our results suggest that some taxa may warrant more specific study. For example, Alticinae beetles (Coleoptera: Chrysomelidae) were alternatively more abundant in either of the two treatments, and their overall abundance was significantly higher on transgenic eggplants. In light of these results and because of their taxonomic proximity to the target species, these herbivores may represent an important nontarget group to be further studied. Moreover, some sap feeders (e.g., Homoptera: Cicadellidae) were more abundant on Bt-expressing plants in some samples in all 3 yr.


Asunto(s)
Artrópodos/clasificación , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Biodiversidad , Endotoxinas/toxicidad , Proteínas Hemolisinas/toxicidad , Insecticidas/toxicidad , Plantas Modificadas Genéticamente/toxicidad , Solanum melongena/genética , Animales , Artrópodos/efectos de los fármacos , Artrópodos/fisiología , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Insecticidas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Dinámica Poblacional
13.
J Pest Sci (2004) ; 90(3): 855-864, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28572750

RESUMEN

Insect-plant interactions may be unintentionally affected when introducing genetically modified (GM) crops into an agro-ecosystem. Our aim was to test the non-target effects of a late blight-resistant GM potato on Myzus persicae in greenhouse and climate room experiments and understand how position and number of R gene insertions can affect non-targets in GM events. We also aimed to compare results to baseline differences among three conventional potato varieties varying in resistance to late blight. Aphid development and survival were affected by some GM events in the first generation, though effects disappeared in the second generation. Effects were not dependent on the presence of a marker gene or the insertion of a second resistance gene. Positional effects of gene insertion influenced aphid performance on certain GM events. However, aphid fitness varied considerably more between conventional potato varieties than between Désirée and the GM events. Comparing different GM events to the non-transformed variety is relevant, since unintended effects of insertion can occur. Our protocols can be recommended for in planta risk assessments with aphids. Ecological perspective is gained by selecting several measured endpoints and by comparing the results with a baseline of conventional cultivars.

14.
Sci Total Environ ; 583: 123-132, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095991

RESUMEN

In legal frameworks worldwide, genetically modified plants (GMPs) are subjected to pre-market environmental risk assessment (ERA) with the aim of identifying potential effects on the environment. In the European Union, the EFSA Guidance Document introduces the rationale that GMPs, as well as their newly produced metabolites, represent the potential stressor to be evaluated during ERA. As a consequence, during several phases of ERA for cultivation purposes, it is considered necessary to use whole plants or plant parts in experimental protocols. The importance of in planta studies as a strategy to address impacts of GMPs on non-target organisms is demonstrated, to evaluate both effects due to the intended modification in plant phenotype (e.g. expression of Cry proteins) and effects due to unintended modifications in plant phenotype resulting from the transformation process (e.g. due to somaclonal variations or pleiotropic effects). In planta tests are also necessary for GMPs in which newly expressed metabolites cannot easily be studied in vitro. This paper reviews the scientific literature supporting the choice of in planta studies as a fundamental tool in ERA of GMPs in cultivation dossiers; the evidence indicates they can realistically mimic the ecological relationships occurring in their receiving environments and provide important insights into the biology and sustainable management of GMPs.


Asunto(s)
Monitoreo del Ambiente , Plantas Modificadas Genéticamente , Ecología , Ambiente , Unión Europea , Medición de Riesgo
15.
Sci Total Environ ; 548-549: 360-369, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26803734

RESUMEN

By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and Octolasion cyaneum. Five out of these eight species are relevant for each biogeographical region with an overlap in the species. Finally, the earthworm species Ap. caliginosa (endogeic, secondary decomposer) and L. terrestris (anecic, primary decomposer) were selected as focal species. In the Mediterranean region L. terrestris may be substituted by the more relevant anecic species L. friendi. The selected focal species are recommended to be included in a standardized laboratory ERA test system based on life-history traits.


Asunto(s)
Monitoreo del Ambiente/métodos , Oligoquetos/fisiología , Plantas Modificadas Genéticamente/toxicidad , Contaminantes del Suelo/toxicidad , Animales , Irlanda , Medición de Riesgo , Suelo , España , Suecia
17.
Ecol Evol ; 4(8): 1267-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24834325

RESUMEN

Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided.

18.
J Appl Ecol ; 49(1): 29-37, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22496596

RESUMEN

In farmland biodiversity, a potential risk to the larvae of non-target Lepidoptera from genetically modified (GM) Bt-maize expressing insecticidal Cry1 proteins is the ingestion of harmful amounts of pollen deposited on their host plants. A previous mathematical model of exposure quantified this risk for Cry1Ab protein. We extend this model to quantify the risk for sensitive species exposed to pollen containing Cry1F protein from maize event 1507 and to provide recommendations for management to mitigate this risk.A 14-parameter mathematical model integrating small- and large-scale exposure was used to estimate the larval mortality of hypothetical species with a range of sensitivities, and under a range of simulated mitigation measures consisting of non-Bt maize strips of different widths placed around the field edge.The greatest source of variability in estimated mortality was species sensitivity. Before allowance for effects of large-scale exposure, with moderate within-crop host-plant density and with no mitigation, estimated mortality locally was <10% for species of average sensitivity. For the worst-case extreme sensitivity considered, estimated mortality locally was 99·6% with no mitigation, although this estimate was reduced to below 40% with mitigation of 24-m-wide strips of non-Bt maize. For highly sensitive species, a 12-m-wide strip reduced estimated local mortality under 1·5%, when within-crop host-plant density was zero. Allowance for large-scale exposure effects would reduce these estimates of local mortality by a highly variable amount, but typically of the order of 50-fold.Mitigation efficacy depended critically on assumed within-crop host-plant density; if this could be assumed negligible, then the estimated effect of mitigation would reduce local mortality below 1% even for very highly sensitive species.Synthesis and applications. Mitigation measures of risks of Bt-maize to sensitive larvae of non-target lepidopteran species can be effective, but depend on host-plant densities which are in turn affected by weed-management regimes. We discuss the relevance for management of maize events where cry1F is combined (stacked) with a herbicide-tolerance trait. This exemplifies how interactions between biota may occur when different traits are stacked irrespective of interactions between the proteins themselves and highlights the importance of accounting for crop management in the assessment of the ecological impact of GM plants.

19.
Environ Biosafety Res ; 7(2): 73-85, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18549769

RESUMEN

Many varieties of transgenic rice are under development in countries where wild and weedy relatives co-occur with the crop. To evaluate possible risks associated with pollen-mediated transgene dispersal, we conducted a two-year survey in Vietnam to examine overlapping flowering periods of rice (Oryza sativa L.), weedy rice (O. sativa), and wild rice (O. rufipogon Griff.), all of which are inter-fertile. We surveyed populations in two regions of the Mekong Delta, northern and southern, and at three sites in each of three habitats per region: fresh water, saline water, and acid sulfate soil. Weedy rice frequently flowered simultaneously with neighboring cultivated rice plants. Flowering was more seasonal in wild rice and often peaked in November and December. Peak flowering times of wild rice overlapped with adjacent rice fields at all of the saline sites and half of the acid sulfate sites. The longer flowering season of wild rice ensured that crop-to-wild gene flow was possible in fresh water habitats as well. Our second objective was to determine whether wild and weedy rice populations are exposed to pests that could be targeted by future transgenes, which may then provide fitness benefits. These populations shared many pathogen and insect herbivore species with cultivated rice (leaffolder, locust, cricket, planthoppers, rice bug, stem borer, sheath blight, blast, bacterial leaf blight, and brown spot). Damage by leaffolders and locusts was the most frequently observed insect feeding damage on all three rice types. Indicator species analysis revealed that most of the insect herbivores were associated with particular habitats, demonstrating the importance of broad geographic sampling for transgenic rice risk assessment. These survey data and the strong likelihood of gene flow from cultivated rice suggest that further studies are needed to examine the effects of transgenic traits such as resistance to pests on the abundance of wild and weedy rice.


Asunto(s)
Flores/fisiología , Flujo Génico , Insectos/fisiología , Oryza/fisiología , Polinización , Animales , Ecosistema , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Vietnam
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA