Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405823, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856634

RESUMEN

Invasive fungal disease accounts for ~3.8 million deaths annually, an unacceptable rate that urgently prompts the discovery of new knowledge-driven treatments. We report the use of camelid single-domain nanobodies (Nbs) against fungal ß-1,3-glucanosyltransferases (Gel) involved in ß-1,3-glucan transglycosylation. Crystal structures of two Nbs with Gel4 from Aspergillus fumigatus revealed binding to a dissimilar CBM43 domain and a highly conserved catalytic domain across fungal species, respectively. Anti-Gel4 active site Nb3 showed significant antifungal efficacy in vitro and in vivo prophylactically and therapeutically against different A. fumigatus and Cryptococcus neoformans isolates, reducing the fungal burden and disease severity, thus significantly improving immunocompromised animal survival. Notably, C. deneoformans (serotype D) strains were more susceptible to Nb3 and genetic Gel deletion than C. neoformans (serotype A) strains, indicating a key role for ß-1,3-glucan remodelling in C. deneoformans survival. These findings add new insights about the role of b-1,3-glucan in fungal biology and demonstrate the potential of nanobodies in targeting fungal enzymes to combat invasive fungal diseases.

2.
FASEB J ; 35(9): e21778, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34383971

RESUMEN

As a result of the relatively few available antifungals and the increasing frequency of resistance to them, the development of novel antifungals is increasingly important. The plant natural product poacic acid (PA) inhibits ß-1,3-glucan synthesis in Saccharomyces cerevisiae and has antifungal activity against a wide range of plant pathogens. However, the mode of action of PA is unclear. Here, we reveal that PA specifically binds to ß-1,3-glucan, its affinity for which is ~30-fold that for chitin. Besides its effect on ß-1,3-glucan synthase activity, PA inhibited the yeast glucan-elongating activity of Gas1 and Gas2 and the chitin-glucan transglycosylase activity of Crh1. Regarding the cellular response to PA, transcriptional co-regulation was mediated by parallel activation of the cell-wall integrity (CWI) and high-osmolarity glycerol signaling pathways. Despite targeting ß-1,3-glucan remodeling, the transcriptional profiles and regulatory circuits activated by caspofungin, zymolyase, and PA differed, indicating that their effects on CWI have different mechanisms. The effects of PA on the growth of yeast strains indicated that it has a mode of action distinct from that of echinocandins, suggesting it is a unique antifungal agent.


Asunto(s)
Antifúngicos/farmacología , Pared Celular/efectos de los fármacos , Ácidos Cumáricos/farmacología , Glicerol/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Estilbenos/farmacología , Transcripción Genética/efectos de los fármacos , beta-Glucanos/farmacología , Caspofungina/farmacología , Pared Celular/genética , Pared Celular/metabolismo , Quitina/farmacología , Equinocandinas/farmacología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/genética , Concentración Osmolar , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/genética
3.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163713

RESUMEN

Living cells exposed to stressful environmental situations can elicit cellular responses that guarantee maximal cell survival. Most of these responses are mediated by mitogen-activated protein kinase (MAPK) cascades, which are highly conserved from yeast to humans. Cell wall damage conditions in the yeast Saccharomyces cerevisiae elicit rescue mechanisms mainly associated with reprogramming specific transcriptional responses via the cell wall integrity (CWI) pathway. Regulation of gene expression by this pathway is coordinated by the MAPK Slt2/Mpk1, mainly via Rlm1 and, to a lesser extent, through SBF (Swi4/Swi6) transcription factors. In this review, we summarize the molecular mechanisms controlling gene expression upon cell wall stress and the role of chromatin structure in these processes. Some of these mechanisms are also discussed in the context of other stresses governed by different yeast MAPK pathways. Slt2 regulates both transcriptional initiation and elongation by interacting with chromatin at the promoter and coding regions of CWI-responsive genes but using different mechanisms for Rlm1- and SBF-dependent genes. Since MAPK pathways are very well conserved in eukaryotic cells and are essential for controlling cellular physiology, improving our knowledge regarding how they regulate gene expression could impact the future identification of novel targets for therapeutic intervention.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Pared Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Med Virol ; 93(9): 5650-5654, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34002864

RESUMEN

The aim of our study was to evaluate the diagnostic performance of two antigen rapid diagnostic tests (Ag-RDTs) to diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We evaluated Panbio and SD-Biosensor Ag-RDTs. We employed 186 polymerase chain reaction (PCR) negative samples to evaluate the specificity and 170 PCR positive samples to assess the sensitivity. We evaluated their sensitivity according to Cycle threshold (C t ) values and days post onset of symptoms (d.p.o.). Tests were compared using the McNemar's test. Agreement was evaluated using the kappa score. Specificity was 100% for Panbio and 97.3% for SD-Biosensor. Sensitivity for samples with C t ≤ 20 was 100% for both assays and for samples with C t = 20-25 was 93.0% (Panbio) and 95.3% (SD-Biosensor) (p = 1.000). Sensitivity decreased for samples wit C t = 25-30 (Panbio: 41.3%, SD-Biosensor: 52.2%, p = 0.125) and samples with C t ≥ 30 (Panbio: 5.0%, SD-Biosensor: 17.5%, p = 0.063). Sensitivity within seven d.p.o. was 87.7% for Panbio and 90.4% for SD-Biosensor and notably decreased after seven d.p.o. Agreement with PCR was excellent for high viral load samples (C t ≤ 25): Panbio, 98.9%, kappa = 0.974; SD-Biosensor, 97.4%, kappa = 0.940. Agreement between Ag-RDTs was excellent (94.9%, kappa = 0.882). Panbio and SD-Biosensor Ag-RDTs showed excellent agreement and diagnostic performance results for samples with high viral loads (C t ≤ 25) or samples within seven d.p.o.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Antígenos Virales/análisis , Técnicas Biosensibles , Pruebas Diagnósticas de Rutina , Humanos , Nasofaringe/virología , Sensibilidad y Especificidad , Carga Viral
5.
J Cell Sci ; 129(8): 1649-60, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26933180

RESUMEN

Activation of the yeast cell wall integrity (CWI) pathway induces an adaptive transcriptional programme that is largely dependent on the transcription factor Rlm1 and the mitogen-activated protein kinase (MAPK) Slt2. Upon cell wall stress, the transcription factor Rlm1 is recruited to the promoters of RLM1 and SLT2, and exerts positive-feedback mechanisms on the expression of both genes. Activation of the MAPK Slt2 by cell wall stress is not impaired in strains with individual blockade of any of the two feedback pathways. Abrogation of the autoregulatory feedback mechanism on RLM1 severely affects the transcriptional response elicited by activation of the CWI pathway. In contrast, a positive trans-acting feedback mechanism exerted by Rlm1 on SLT2 also regulates CWI output responses but to a lesser extent. Therefore, a complete CWI transcriptional response requires not only phosphorylation of Rlm1 by Slt2 but also concurrent SLT2- and RLM1-mediated positive-feedback mechanisms; sustained patterns of gene expression are mainly achieved by positive autoregulatory circuits based on the transcriptional activation of Rlm1.


Asunto(s)
Pared Celular/fisiología , Homeostasis , Proteínas de Dominio MADS/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Proteínas de Dominio MADS/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Activación Transcripcional
6.
Yeast ; 40(7): 235-236, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37246734
7.
Nucleic Acids Res ; 44(15): 7159-72, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27112564

RESUMEN

The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Acetilación , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Rojo Congo/toxicidad , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Histona Acetiltransferasas/química , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas de Dominio MADS/metabolismo , Mutación , Regiones Promotoras Genéticas , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/química , Transactivadores/genética , Transcripción Genética/efectos de los fármacos
8.
Cell Microbiol ; 18(9): 1239-50, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27185288

RESUMEN

The cross-linking of polysaccharides to assemble new cell wall in fungi requires transglycosylation mechanisms by which preexisting glycosidic linkages are broken and new linkages are created between the polysaccharides. The molecular mechanisms for these processes, which are essential for fungal cell biology, are only now beginning to be elucidated. Recent development of in vivo and in vitro biochemical approaches has allowed characterization of important aspects about the formation of chitin-glucan covalent cell wall cross-links by cell wall transglycosylases of the CRH family and their biological function. Covalent linkages between chitin and glucan mediated by Crh proteins control morphogenesis and also play important roles in the remodeling of the fungal cell wall as part of the compensatory responses necessary to counterbalance cell wall stress. These enzymes are encoded by multigene families of redundant proteins very well conserved in fungal genomes but absent in mammalian cells. Understanding the molecular basis of fungal adaptation to cell wall stress through these and other cell wall remodeling enzymatic activities offers an opportunity to explore novel antifungal treatments and to identify potential fungal virulence factors.


Asunto(s)
Pared Celular/fisiología , Quitina/fisiología , Proteínas Fúngicas/fisiología , Hongos/fisiología , Glucanos/fisiología , Secuencia de Aminoácidos , Animales , Pared Celular/ultraestructura , Hongos/ultraestructura , Glicósido Hidrolasas/metabolismo , Glicosilación , Humanos , Morfogénesis , Procesamiento Proteico-Postraduccional
9.
BMC Genomics ; 17: 482, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27411447

RESUMEN

BACKGROUND: The cell wall is essential for the yeast to hypha (Y-H) transition that enables Candida albicans to invade human tissues and evade the immune system. The main constituent, ß(1,3)-glucan, is remodeled by glucanosyltransferases of the GH72 family. Phr1p is responsible of glucan remodeling at neutral-alkaline pH and is essential for morphogenesis and virulence. Due to the pH-regulated expression of PHR1, the phr1Δ phenotype is manifested at pH > 6 and its severity increases with the rise in pH. We exploited the pH-conditional nature of a PHR1 null mutant to analyze the impact of glucan remodeling on the hyphal transcriptional program and the role of chitin synthases in the hyphal wall stress (HWS) response. RESULTS: In hyphal growth inducing conditions, phr1Δ germ tubes are defective in elongation, accumulate chitin, and constitutively activate the signaling pathways mediated by the MAP kinases Mkc1p, Cek1p and Hog1p. The transcriptional profiles revealed an increase of transcript levels for genes involved in cell wall formation (CHS2 and CHS8, CRH11, PGA23, orf19.750, RBR1, RBT4, ECM331, PGA6, PGA13), protein N-glycosylation and sorting in the ER (CWH8 and CHS7), signaling (CPP1, SSK2), ion transport (FLC2, YVC1), stress response and metabolism and a reduced expression of adhesins. A transient up-regulation of DNA replication genes associated with entry into S-phase occurred whereas cell-cycle regulating genes (PCL1, PCL2, CCN1, GIN4, DUN1, CDC28) were persistently up-regulated. To test the physiological relevance of altered CHS gene expression, phr1Δ chsxΔ (x = 2,3,8) mutant phenotypes were analyzed during the Y-H transition. PHR1 deletion was synthetic lethal with CHS3 loss on solid M199 medium-pH 7.5 and with CHS8 deletion on solid M199-pH 8. On Spider medium, PHR1 was synthetic lethal with CHS3 or CHS8 at pH 8. CONCLUSIONS: The absence of Phr1p triggers an adaptive response aimed to reinforce the hyphal cell wall and restore homeostasis. Chs3p is essential in preserving phr1Δ cell integrity during the Y-H transition. Our findings also unveiled an unanticipated essential role of Chs8p during filamentation on solid media. These results highlight the flexibility of fungal cells in maintaining cell wall integrity and contribute to assessments of glucan remodeling as a target for therapy.


Asunto(s)
Candida albicans/fisiología , Pared Celular/metabolismo , Genoma Fúngico , Genómica , Glucanos/metabolismo , Hifa , Estrés Fisiológico , Análisis por Conglomerados , Replicación del ADN , Epistasis Genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genómica/métodos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación , Transcriptoma
10.
BMC Genomics ; 16: 683, 2015 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-26341223

RESUMEN

BACKGROUND: The fungal cell wall forms a compact network whose integrity is essential for cell morphology and viability. Thus, fungal cells have evolved mechanisms to elicit adequate adaptive responses when cell wall integrity (CWI) is compromised. Functional genomic approaches provide a unique opportunity to globally characterize these adaptive mechanisms. To provide a global perspective on these CWI regulatory mechanisms, we developed chemical-genomic profiling of haploid mutant budding yeast cells to systematically identify in parallel those genes required to cope with stresses interfering the cell wall by different modes of action: ß-1,3 glucanase and chitinase activities (zymolyase), inhibition of ß-1,3 glucan synthase (caspofungin) and binding to chitin (Congo red). RESULTS: Measurement of the relative fitness of the whole collection of 4786 haploid budding yeast knock-out mutants identified 222 mutants hypersensitive to caspofungin, 154 mutants hypersensitive to zymolyase, and 446 mutants hypersensitive to Congo red. Functional profiling uncovered both common and specific requirements to cope with different cell wall damages. We identified a cluster of 43 genes highly important for the integrity of the cell wall as the common "signature of cell wall maintenance (CWM)". This cluster was enriched in genes related to vesicular trafficking and transport, cell wall remodeling and morphogenesis, transcription and chromatin remodeling, signal transduction and RNA metabolism. Although the CWI pathway is the main MAPK pathway regulating cell wall integrity, the collaboration with other signal transduction pathways like the HOG pathway and the invasive growth pathway is also required to cope with the cell wall damage depending on the nature of the stress. Finally, 25 mutant strains showed enhanced caspofungin resistance, including 13 that had not been previously identified. Only three of them, wsc1Δ, elo2Δ and elo3Δ, showed a significant decrease in ß-1,3-glucan synthase activity. CONCLUSIONS: This work provides a global perspective about the mechanisms involved in cell wall stress adaptive responses and the cellular functions required for cell wall integrity. The results may be useful to uncover new potential antifungal targets and develop efficient antifungal strategies by combination of two drugs, one targeting the cell wall and the other interfering with the adaptive mechanisms.


Asunto(s)
Antifúngicos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/genética , Hongos/efectos de los fármacos , Hongos/genética , Perfilación de la Expresión Génica , Genómica , Adaptación Biológica/genética , Caspofungina , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Análisis por Conglomerados , Rojo Congo/farmacología , Equinocandinas/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genómica/métodos , Hidrolasas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipopéptidos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos , Transcriptoma
11.
J Cell Sci ; 125(Pt 23): 5781-9, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23077181

RESUMEN

Previous work has shown that, in cla4Δ cells of budding yeast, where septin ring organization is compromised, the chitin ring at the mother-daughter neck becomes essential for prevention of neck widening and for cytokinesis. Here, we show that it is not the chitin ring per se, but its linkage to ß(1-3)glucan that is required for control of neck growth. When in a cla4Δ background, crh1Δ crh2Δ mutants, in which the chitin ring is not connected to ß(1-3)glucan, grew very slowly and showed wide and growing necks, elongated buds and swollen cells with large vacuoles. A similar behavior was elicited by inhibition of the Crh proteins. This aberrant morphology matched that of cla4Δ chs3Δ cells, which have no chitin at the neck. Thus, this is a clear case in which a specific chemical bond between two substances, chitin and glucan, is essential for the control of morphogenesis. This defines a new paradigm, in which chemistry regulates growth.


Asunto(s)
Pared Celular/metabolismo , Saccharomycetales/metabolismo , Pared Celular/ultraestructura , Quitina/metabolismo , Glucanos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Microscopía Electrónica , Morfogénesis/genética , Morfogénesis/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/ultraestructura
12.
Biochem J ; 455(3): 307-18, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23919454

RESUMEN

The mechanical properties of fungal cell walls are largely determined by composition and mutual cross-linking of their macromolecular components. Previous work showed that the Crh proteins are required for the formation of cross-links between chitin and glucan at the Saccharomyces cerevisiae cell wall. In the present study, the proteins encoded by CRH1 and CRH2 were heterologously expressed in Pichia pastoris and a sensitive fluorescence in vitro soluble assay was devised for determination of their transglycosylating activities. Both proteins act as chitin transglycosylases; they use soluble chitin derivatives, such as carboxymethyl chitin, glycol-chitin and/or N-acetyl chito-oligosaccharides of DP (degree of polymerization)≥5 as the oligoglycosyl donors, and oligosaccharides derived from chitin, ß-(1,3)-glucan (laminarin) and ß-(1,6)-glucan (pustulan), fluorescently labelled with sulforhodamine or FITC as acceptors. The minimal number of intact hexopyranose units required by Crh1 and/or Crh2 in the molecule of the acceptor oligosaccharide was two and the effectivity of the acceptor increased with the increasing length of its oligosaccharide chain. Products of the transglycosylation reactions were hybrid molecules composed of the acceptor and portions of carboxymethyl chitin attached to its non-reducing end. Both proteins exhibited a weak chitinolytic activity in different assays whereby the ratio of endo- compared with exo-chitinase activity was approximately 4-fold higher in Crh1 than in Crh2. The pH optimum of both enzymes was 3.5 and the optimum temperature was 37°C. The results obtained in vitro with different fluorescently labelled oligosaccharides as artificial chitin acceptors corroborated well with those observed in vivo.


Asunto(s)
Pared Celular/enzimología , Glicósido Hidrolasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Catálisis , Pared Celular/química , Pared Celular/metabolismo , Quitina/metabolismo , Fluoresceína-5-Isotiocianato/química , Fluorescencia , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , beta-Glucanos/metabolismo
13.
J Mol Biol ; 436(10): 168570, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604529

RESUMEN

Cellular mRNA levels, particularly under stress conditions, can be finely regulated by the coordinated action of transcription and degradation processes. Elements of the 5'-3' mRNA degradation pathway, functionally associated with the exonuclease Xrn1, can bind to nuclear chromatin and modulate gene transcription. Within this group are the so-called decapping activators, including Pat1, Dhh1, and Lsm1. In this work, we have investigated the role of Pat1 in the yeast adaptive transcriptional response to cell wall stress. Thus, we demonstrated that in the absence of Pat1, the transcriptional induction of genes regulated by the Cell Wall Integrity MAPK pathway was significantly affected, with no effect on the stability of these transcripts. Furthermore, under cell wall stress conditions, Pat1 is recruited to Cell Wall Integrity-responsive genes in parallel with the RNA Pol II complex, participating both in pre-initiation complex assembly and transcriptional elongation. Indeed, strains lacking Pat1 showed lower recruitment of the transcription factor Rlm1, less histone H3 displacement at Cell Wall Integrity gene promoters, and impaired recruitment and progression of RNA Pol II. Moreover, Pat1 and the MAPK Slt2 occupied the coding regions interdependently. Our results support the idea that Pat1 and presumably other decay factors behave as transcriptional regulators of Cell Wall Integrity-responsive genes under cell wall stress conditions.


Asunto(s)
Pared Celular , Endorribonucleasas , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Estabilidad del ARN , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Pared Celular/enzimología , Pared Celular/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas de Dominio MADS/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
14.
Eukaryot Cell ; 11(4): 388-400, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22366124

RESUMEN

Previous results suggested that the chitin ring present at the yeast mother-bud neck, which is linked specifically to the nonreducing ends of ß(1-3)glucan, may help to suppress cell wall growth at the neck by competing with ß(1-6)glucan and thereby with mannoproteins for their attachment to the same sites. Here we explored whether the linkage of chitin to ß(1-3)glucan may also prevent the remodeling of this polysaccharide that would be necessary for cell wall growth. By a novel mild procedure, ß(1-3)glucan was isolated from cell walls, solubilized by carboxymethylation, and fractionated by size exclusion chromatography, giving rise to a very high-molecular-weight peak and to highly polydisperse material. The latter material, soluble in alkali, may correspond to glucan being remodeled, whereas the large-size fraction would be the final cross-linked structural product. In fact, the ß(1-3)glucan of buds, where growth occurs, is solubilized by alkali. A gas1 mutant with an expected defect in glucan elongation showed a large increase in the polydisperse fraction. By a procedure involving sodium hydroxide treatment, carboxymethylation, fractionation by affinity chromatography on wheat germ agglutinin-agarose, and fractionation by size chromatography on Sephacryl columns, it was shown that the ß(1-3)glucan attached to chitin consists mostly of high-molecular-weight material. Therefore, it appears that linkage to chitin results in a polysaccharide that cannot be further remodeled and does not contribute to growth at the neck. In the course of these experiments, the new finding was made that part of the chitin forms a noncovalent complex with ß(1-3)glucan.


Asunto(s)
Quitina/metabolismo , Glucanos/metabolismo , Saccharomyces cerevisiae/metabolismo , Conformación de Carbohidratos , Pared Celular/química , Pared Celular/metabolismo , Pared Celular/fisiología , Fraccionamiento Químico , Quitina/química , Quitina/aislamiento & purificación , Técnicas de Inactivación de Genes , Glucano Endo-1,3-beta-D-Glucosidasa/química , Glucanos/química , Glucanos/aislamiento & purificación , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Peso Molecular , Reproducción Asexuada , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Hidróxido de Sodio/química , Solventes/química
16.
Mol Microbiol ; 79(6): 1529-46, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21231968

RESUMEN

O-mannosylation is a crucial protein modification in eukaryotes that is initiated by the essential family of protein O-mannosyltransferases (PMTs). Here we demonstrate that in the model yeast Saccharomyces cerevisiae rhodanine-3-acetic acid derivatives affect members of all PMT subfamilies. Specifically, we used OGT2468 to analyse genome-wide transcriptional changes in response to general inhibition of O-mannosylation in baker's yeast. PMT inhibition results in the activation of the cell wall integrity (CWI) pathway. Coinciding, the mitogen-activated kinase Slt2p is activated in vivo and CWI pathway mutants are hypersensitive towards OGT2468. Further, induction of many target genes of the unfolded protein response (UPR) and ER-associated protein degradation (ERAD) is observed. The interdependence of O-mannosylation and UPR/ERAD is confirmed by genetic interactions between HAC1 and PMTs, and increased degradation of the ERAD substrate Pdr5p* in pmtΔ mutants. Transcriptome analyses further suggested that mating and filamentous growth are repressed upon PMT inhibition. Accordingly, in vivo mating efficiency and invasive growth are considerably decreased upon OGT2468 treatment. Quantitative PCR and ChIP analyses suggest that downregulation of mating genes is dependent on the transcription factor Ste12p. Finally, inhibitor studies identified a role of the Ste12p-dependent vegetative signalling cascade in the adaptive response to inhibition of O-mannosylation.


Asunto(s)
Genoma Fúngico , Genómica , Manosa/metabolismo , Rodanina/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glicosilación/efectos de los fármacos , Rodanina/análogos & derivados , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética
17.
Nucleic Acids Res ; 38(Web Server issue): W228-32, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20513648

RESUMEN

The enormous amount of data available in public gene expression repositories such as Gene Expression Omnibus (GEO) offers an inestimable resource to explore gene expression programs across several organisms and conditions. This information can be used to discover experiments that induce similar or opposite gene expression patterns to a given query, which in turn may lead to the discovery of new relationships among diseases, drugs or pathways, as well as the generation of new hypotheses. In this work, we present MARQ, a web-based application that allows researchers to compare a query set of genes, e.g. a set of over- and under-expressed genes, against a signature database built from GEO datasets for different organisms and platforms. MARQ offers an easy-to-use and integrated environment to mine GEO, in order to identify conditions that induce similar or opposite gene expression patterns to a given experimental condition. MARQ also includes additional functionalities for the exploration of the results, including a meta-analysis pipeline to find genes that are differentially expressed across different experiments. The application is freely available at http://marq.dacya.ucm.es.


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Animales , Bases de Datos Genéticas , Humanos , Internet , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
PeerJ Comput Sci ; 8: e792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35111908

RESUMEN

Peer production online communities are groups of people that collaboratively engage in the building of common resources such as wikis and open source projects. In such communities, participation is highly unequal: few people concentrate the majority of the workload, while the rest provide irregular and sporadic contributions. The distribution of participation is typically characterized as a power law distribution. However, recent statistical studies on empirical data have challenged the power law dominance in other domains. This work critically examines the assumption that the distribution of participation in wikis follows such distribution. We use statistical tools to analyse over 6,000 wikis from Wikia/Fandom, the largest wiki repository. We study the empirical distribution of each wiki comparing it with different well-known skewed distributions. The results show that the power law performs poorly, surpassed by three others with a more moderated heavy-tail behavior. In particular, the truncated power law is superior to all competing distributions, or superior to some and as good as the rest, in 99.3% of the cases. These findings have implications that can inform a better modeling of participation in peer production, and help to produce more accurate predictions of the tail behavior, which represents the activity and frequency of the core contributors. Thus, we propose to consider the truncated power law as the distribution to characterize participation distribution in wiki communities. Furthermore, the truncated power law parameters provide a meaningful interpretation to characterize the community in terms of the frequency of participation of occasional contributors and how unequal are the group of core contributors. Finally, we found a relationship between the parameters and the productivity of the community and its size. These results open research venues for the characterization of communities in wikis and in online peer production.

19.
J Fungi (Basel) ; 8(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35887473

RESUMEN

Conditions altering the yeast cell wall lead to the activation of an adaptive transcriptional response mainly governed by the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway. Two high-throughput screenings were developed using the yTHC collection of yeast conditional mutant strains to systematically identify essential genes related to cell wall integrity, and those required for the transcriptional program elicited by cell wall stress. Depleted expression of 52 essential genes resulted in hypersensitivity to the dye Calcofluor white, with chromatin organization, Golgi vesicle transport, rRNA processing, and protein glycosylation processes, as the most highly representative functional groups. Via a flow cytometry-based quantitative assay using a CWI reporter plasmid, 97 strains exhibiting reduced gene-reporter expression levels upon stress were uncovered, highlighting genes associated with RNA metabolism, transcription/translation, protein degradation, and chromatin organization. This screening also led to the discovery of 41 strains displaying a basal increase in CWI-associated gene expression, including mainly putative cell wall-related genes. Interestingly, several members of the RSC chromatin remodelling complex were uncovered in both screenings. Notably, Rsc9 was necessary to regulate the gene expression of CWI-related genes both under stress and non-stress conditions, suggesting distinct requirements of the RSC complex for remodelling particular genes.

20.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119209, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34999138

RESUMEN

In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Semivida , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Polirribosomas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA