Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Proc Biol Sci ; 290(1998): 20222572, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161335

RESUMEN

HIV-1 subtypes differ in their clinical manifestations and the speed in which they spread. In particular, the frequency of subtype C is increasing relative to subtypes A and D. We investigate whether HIV-1 subtypes A, C and D differ in their per-pathogen virulence and to what extend this explains the difference in spread between these subtypes. We use data from the hormonal contraception and HIV-1 genital shedding and disease progression among women with primary HIV infection study. For each study participant, we determine the set-point viral load value, CD4+ T cell level after primary infection and CD4+ T cell decline. Based on both the CD4+ T cell count after primary infection and CD4+ T cell decline, we estimate the time until AIDS. We then obtain our newly introduced measure of virulence as the inverse of the estimated time until AIDS. After fitting a model to the measured virulence and set-point viral load values, we tested if this relation varies per subtype. We found that subtype C has a significantly higher per-pathogen virulence than subtype A. Based on an evolutionary model, we then hypothesize that differences in the primary length of infection period cause the observed variation in the speed of spread of the subtypes.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , VIH-1 , Humanos , Femenino , Virulencia , Evolución Biológica
3.
J Virol ; 96(14): e0185121, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35862673

RESUMEN

A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.


Asunto(s)
Proteína gp120 de Envoltorio del VIH , VIH-1 , Internalización del Virus , Anticuerpos Neutralizantes/metabolismo , Sitios de Unión , Antígenos CD4/metabolismo , Farmacorresistencia Viral/genética , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Maraviroc/farmacología , Polimorfismo Genético , Unión Proteica
4.
PLoS Pathog ; 17(12): e1010092, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914812

RESUMEN

The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Virus de la Estomatitis Vesicular Indiana/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/genética , Chlorocebus aethiops , Humanos , Inmunización , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Proteínas Virales/genética , Proteínas Virales/inmunología
5.
J Virol ; 95(16): e0058821, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037423

RESUMEN

Serine incorporator 5 (SERINC5) reduces the infectivity of progeny HIV-1 virions by incorporating into the outer host-derived viral membrane during egress. To counter SERINC5, the HIV-1 accessory protein Nef triggers SERINC5 internalization by engaging the adaptor protein 2 (AP-2) complex using the [D/E]xxxL[L/I]167 Nef dileucine motif. Nef also engages AP-2 via its dileucine motif to downregulate the CD4 receptor. Although these two Nef functions are related, the mechanisms governing SERINC5 downregulation are incompletely understood. Here, we demonstrate that two primary Nef isolates, referred to as 2410 and 2391 Nef, acquired from acutely HIV-1 infected women from Zimbabwe, both downregulate CD4 from the cell surface. However, only 2410 Nef retains the ability to downregulate cell surface SERINC5. Using a series of Nef chimeras, we mapped the region of 2391 Nef responsible for the functional uncoupling of these two antagonistic pathways to the dileucine motif. Modifications of the first and second x positions of the 2410 Nef dileucine motif to asparagine and aspartic acid residues, respectively (ND164), impaired cell surface SERINC5 downregulation, which resulted in reduced infectious virus yield in the presence of SERINC5. The ND164 mutation additionally partially impaired, but did not completely abrogate, Nef-mediated cell surface CD4 downregulation. Furthermore, the patient infected with HIV-1 encoding 2391 Nef had stable CD4+ T cell counts, whereas infection with HIV-1 encoding 2410 Nef resulted in CD4+ T cell decline and disease progression. IMPORTANCE A contributing factor to HIV-1 persistence is evasion of the host immune response. HIV-1 uses the Nef accessory protein to evade the antiviral roles of the adaptive and intrinsic innate immune responses. Nef targets SERINC5, a restriction factor which potently impairs HIV-1 infection by triggering SERINC5 removal from the cell surface. The molecular determinants underlying this Nef function remain incompletely understood. Recent studies have found a correlation between the extent of Nef-mediated SERINC5 downregulation and the rate of disease progression. Furthermore, single-residue polymorphisms outside the known Nef functional motifs can modulate SERINC5 downregulation. The identification of a naturally occurring Nef polymorphism impairing SERINC5 downregulation in this study supports a link between Nef downregulation of SERINC5 and the rate of plasma CD4+ T cell decline. Moreover, the observed functional impairments of this polymorphism could provide clues to further elucidate unknown aspects of the SERINC5 antagonistic pathway via Nef.


Asunto(s)
Antígenos CD4/metabolismo , Infecciones por VIH/virología , VIH-1/patogenicidad , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Secuencias de Aminoácidos , Linfocitos T CD4-Positivos/patología , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Infecciones por VIH/metabolismo , VIH-1/genética , Humanos , Mutación , Polimorfismo Genético , Virión , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
6.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177204

RESUMEN

Exposure of the genital mucosa to a genetically diverse viral swarm from the donor HIV-1 can result in breakthrough and systemic infection by a single transmitted/founder (TF) virus in the recipient. The highly diverse HIV-1 envelope (Env) in this inoculating viral swarm may have a critical role in transmission and subsequent immune response. Thus, chronic (Envchronic) and acute (Envacute) Env chimeric HIV-1 were tested using multivirus competition assays in human mucosal penile and cervical tissues. Viral competition analysis revealed that Envchronic viruses resided and replicated mainly in the tissue, while Envacute viruses penetrated the human tissue and established infection of CD4+ T cells more efficiently. Analysis of the replication fitness, as tested in peripheral blood mononuclear cells (PBMCs), showed similar replication fitness of Envacute and Envchronic viruses, which did not correlate with transmission fitness in penile tissue. Further, we observed that chimeric Env viruses with higher replication in genital mucosal tissue (chronic Env viruses) had higher binding affinity to C-type lectins. Data presented herein suggest that the inoculating HIV-1 may be sequestered in the genital mucosal tissue (represented by chronic Env HIV-1) but that a single HIV-1 clone (e.g., acute Env HIV-1) can escape this trapped replication for systemic infection.IMPORTANCE During heterosexual HIV-1 transmission, a genetic bottleneck occurs in the newly infected individual as the virus passes from the mucosa, leading to systemic infection with a single transmitted HIV-1 clone in the recipient. This bottleneck in the recipient has just been described (K. Klein et al., PLoS Pathog 14:e1006754, https://doi.org/10.1371/journal.ppat.1006754), and the mechanisms involved in this selection process have not been elucidated. However, understanding mucosal restriction is of the utmost importance for understanding dynamics of infections and for designing focused vaccines. Using our human penile and cervical mucosal tissue models for mixed HIV infections, we provide evidence that HIV-1 from acute/early infection, compared to that from chronic infection, can more efficiently traverse the mucosal epithelium and be transmitted to T cells, suggesting higher transmission fitness. This study focused on the role of the HIV-1 envelope in transmission and provides strong evidence that HIV transmission may involve breaking the mucosal lectin trap.


Asunto(s)
Cuello del Útero/virología , Infecciones por VIH/transmisión , VIH-1/genética , Leucocitos Mononucleares/virología , Membrana Mucosa/virología , Pene/virología , Proteínas Virales/genética , Femenino , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , ARN Viral/análisis , ARN Viral/genética
7.
Retrovirology ; 18(1): 21, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344423

RESUMEN

HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.


Asunto(s)
Terapia Antirretroviral Altamente Activa/normas , Países en Desarrollo/estadística & datos numéricos , Reservorios de Enfermedades/virología , Infecciones por VIH/tratamiento farmacológico , Latencia del Virus/efectos de los fármacos , África del Sur del Sahara/epidemiología , Terapia Antirretroviral Altamente Activa/métodos , Terapia Antirretroviral Altamente Activa/estadística & datos numéricos , Costo de Enfermedad , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , VIH-1/genética , VIH-1/patogenicidad , Humanos
8.
J Antimicrob Chemother ; 76(11): 2965-2974, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453542

RESUMEN

OBJECTIVES: The second-generation integrase strand transfer inhibitor (INSTI) bictegravir is becoming accessible in low- and middle-income countries (LMICs), and another INSTI, cabotegravir, has recently been approved as a long-acting injectable. Data on bictegravir and cabotegravir susceptibility in raltegravir-experienced HIV-1 subtype A- and D-infected patients carrying drug resistance mutations (DRMs) remain very scarce in LMICs. PATIENTS AND METHODS: HIV-1 integrase (IN)-recombinant viruses from eight patients failing raltegravir-based third-line therapy in Uganda were genotypically and phenotypically tested for susceptibility to bictegravir and cabotegravir. Ability of these viruses to integrate into human genomes was assessed in MT-4 cells. RESULTS: HIV-1 IN-recombinant viruses harbouring single primary mutations (N155H or Y143R/S) or in combination with secondary INSTI mutations (T97A, M50I, L74IM, E157Q, G163R or V151I) were susceptible to both bictegravir and cabotegravir. However, combinations of primary INSTI-resistance mutations such as E138A/G140A/G163R/Q148R or E138K/G140A/S147G/Q148K led to decreased susceptibility to both cabotegravir (fold change in EC50 values from 429 to 1000×) and bictegravir (60 to 100×), exhibiting a high degree of cross-resistance. However, these same IN-recombinant viruses showed impaired integration capacity (14% to 48%) relative to the WT HIV-1 NL4-3 strain in the absence of drug. CONCLUSIONS: Though not currently widely accessible in most LMICs, bictegravir and cabotegravir offer a valid alternative to HIV-infected individuals harbouring subtype A and D HIV-1 variants with reduced susceptibility to first-generation INSTIs but previous exposure to raltegravir may reduce efficacy, more so with cabotegravir.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Amidas , Farmacorresistencia Viral , Infecciones por VIH/tratamiento farmacológico , Integrasa de VIH/genética , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/genética , Compuestos Heterocíclicos con 3 Anillos , Humanos , Mutación , Piperazinas , Piridonas/farmacología , Raltegravir Potásico/farmacología , Raltegravir Potásico/uso terapéutico
9.
J Antimicrob Chemother ; 75(12): 3525-3533, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853364

RESUMEN

BACKGROUND: Increasing first-line treatment failures in low- and middle-income countries (LMICs) have led to increased use of integrase strand transfer inhibitors (INSTIs) such as dolutegravir. However, HIV-1 susceptibility to INSTIs in LMICs, especially with previous raltegravir exposure, is poorly understood due to infrequent reporting of INSTI failures and testing for INSTI drug resistance mutations (DRMs). METHODS: A total of 51 non-subtype B HIV-1 infected patients failing third-line (raltegravir-based) therapy in Uganda were initially selected for the study. DRMs were detected using Sanger and deep sequencing. HIV integrase genes of 13 patients were cloned and replication capacities (RCs) and phenotypic susceptibilities to dolutegravir, raltegravir and elvitegravir were determined with TZM-bl cells. Spearman's correlation coefficient was used to determine cross-resistance between INSTIs. RESULTS: INSTI DRMs were detected in 47% of patients. HIV integrase-recombinant virus carrying one primary INSTI DRM (N155H or Y143R/S) was susceptible to dolutegravir but highly resistant to raltegravir and elvitegravir (>50-fold change). Two patients, one with E138A/G140A/Q148R/G163R and one with E138K/G140A/S147G/Q148K, displayed the highest reported resistance to raltegravir, elvitegravir and even dolutegravir. The former multi-DRM virus had WT RC whereas the latter had lower RCs than WT. CONCLUSIONS: In HIV-1 subtype A- and D-infected patients failing raltegravir and harbouring INSTI DRMs, there is high-level resistance to elvitegravir and raltegravir. More routine monitoring of INSTI treatment may be advised in LMICs, considering that multiple INSTI DRMs may have accumulated during prolonged exposure to raltegravir during virological failure, leading to high-level INSTI resistance, including dolutegravir resistance.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Farmacorresistencia Viral , Infecciones por VIH/tratamiento farmacológico , Integrasa de VIH/genética , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/genética , Compuestos Heterocíclicos con 3 Anillos , Humanos , Mutación , Oxazinas , Piperazinas/uso terapéutico , Piridonas , Raltegravir Potásico/farmacología , Raltegravir Potásico/uso terapéutico , Uganda
10.
PLoS Pathog ; 14(1): e1006754, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346424

RESUMEN

In the majority of cases, human immunodeficiency virus type 1 (HIV-1) infection is transmitted through sexual intercourse. A single founder virus in the blood of the newly infected donor emerges from a genetic bottleneck, while in rarer instances multiple viruses are responsible for systemic infection. We sought to characterize the sequence diversity at early infection, between two distinct anatomical sites; the female reproductive tract vs. systemic compartment. We recruited 72 women from Uganda and Zimbabwe within seven months of HIV-1 infection. Using next generation deep sequencing, we analyzed the total genetic diversity within the C2-V3-C3 envelope region of HIV-1 isolated from the female genital tract at early infection and compared this to the diversity of HIV-1 in plasma. We then compared intra-patient viral diversity in matched cervical and blood samples with three or seven months post infection. Genetic analysis of the C2-V3-C3 region of HIV-1 env revealed that early HIV-1 isolates within blood displayed a more homogeneous genotype (mean 1.67 clones, range 1-5 clones) than clones in the female genital tract (mean 5.7 clones, range 3-10 clones) (p<0.0001). The higher env diversity observed within the genital tract compared to plasma was independent of HIV-1 subtype (A, C and D). Our analysis of early mucosal infections in women revealed high HIV-1 diversity in the vaginal tract but few transmitted clones in the blood. These novel in vivo finding suggest a possible mucosal sieve effect, leading to the establishment of a homogenous systemic infection.


Asunto(s)
Cuello del Útero/virología , Variación Genética , Infecciones por VIH/virología , Seropositividad para VIH/virología , VIH-1/genética , Vagina/virología , Viremia/virología , Secuencia de Bases , Estudios de Cohortes , Femenino , Seropositividad para VIH/sangre , VIH-1/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Longitudinales , ARN Viral/sangre , ARN Viral/química , ARN Viral/aislamiento & purificación , Infecciones del Sistema Genital/sangre , Infecciones del Sistema Genital/virología , Uganda , Carga Viral , Viremia/sangre , Zimbabwe , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
11.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669830

RESUMEN

In humans, homologous to the E6-AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing protein 5 (HERC5) is an interferon-induced protein that inhibits replication of evolutionarily diverse viruses, including human immunodeficiency virus type 1 (HIV-1). To better understand the origin, evolution, and function of HERC5, we performed phylogenetic, structural, and functional analyses of the entire human small-HERC family, which includes HERC3, HERC4, HERC5, and HERC6. We demonstrated that the HERC family emerged >595 million years ago and has undergone gene duplication and gene loss events throughout its evolution. The structural topology of the RCC1-like domain and HECT domains from all HERC paralogs is highly conserved among evolutionarily diverse vertebrates despite low sequence homology. Functional analyses showed that the human small HERCs exhibit different degrees of antiviral activity toward HIV-1 and that HERC5 provides the strongest inhibition. Notably, coelacanth HERC5 inhibited simian immunodeficiency virus (SIV), but not HIV-1, particle production, suggesting that the antiviral activity of HERC5 emerged over 413 million years ago and exhibits species- and virus-specific restriction. In addition, we showed that both HERC5 and HERC6 are evolving under strong positive selection, particularly blade 1 of the RCC1-like domain, which we showed is a key determinant of antiviral activity. These studies provide insight into the origin, evolution, and biological importance of the human restriction factor HERC5 and the other HERC family members.IMPORTANCE Intrinsic immunity plays an important role as the first line of defense against viruses. Studying the origins, evolution, and functions of proteins responsible for effecting this defense will provide key information about virus-host relationships that can be exploited for future drug development. We showed that HERC5 is one such antiviral protein that belongs to an evolutionarily conserved family of HERCs with an ancient marine origin. Not all vertebrates possess all HERC members, suggesting that different HERCs emerged at different times during evolution to provide the host with a survival advantage. Consistent with this, two of the more recently emerged HERC members, HERC5 and HERC6, displayed strong signatures of having been involved in an ancient evolutionary battle with viruses. Our findings provide new insights into the evolutionary origin and function of the HERC family in vertebrate evolution, identifying HERC5 and possibly HERC6 as important effectors of intrinsic immunity in vertebrates.


Asunto(s)
Antivirales/metabolismo , Organismos Acuáticos , Evolución Molecular , Infecciones por VIH/virología , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Virales/metabolismo , Infecciones por VIH/genética , VIH-1/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Filogenia , Conformación Proteica , Selección Genética , Proteínas Virales/genética
12.
AIDS Res Ther ; 16(1): 3, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670037

RESUMEN

BACKGROUND: Our understanding of HIV-1 and antiretroviral treatment (ART) is strongly biased towards subtype B, the predominant subtype in North America and western Europe. Efforts to characterize the response to first-line treatments in other HIV-1 subtypes have been hindered by the availability of large study cohorts in resource-limited settings. To maximize our statistical power, we combined HIV-1 sequence and clinical data from every available study population associated with the Joint Clinical Research Centre (JCRC) in Uganda. These records were combined with contemporaneous ART-naive records from Uganda in the Stanford HIVdb database. METHODS: Treatment failures were defined by the presence of HIV genotype records with sample collection dates after the ART start dates in the JCRC database. Drug resistances were predicted by the Stanford HIVdb algorithm, and HIV subtype classification and recombination detection was performed with SCUEAL. We used Bayesian network analysis to evaluate associations between drug exposures and subtypes, and binomial regression for associations with recombination. RESULTS: This is the largest database of first-line treatment failures ([Formula: see text]) in Uganda to date, with a predicted statistical power of 80% to detect subtype associations at an odds ratio of [Formula: see text]. In the subset where drug regimen data were available, we observed that use of 3TC was associated with a higher rate of first line treatment failure, whereas regimens containing AZT and TDF were associated with reduced rates of failure. In the complete database, we found limited evidence of associations between HIV-1 subtypes and treatment failure, with the exception of a significantly lower frequency of failures among A/D recombinants that comprised about 7% of the population. First-line treatment failure was significantly associated with reduced numbers of recombination breakpoints across subtypes. CONCLUSIONS: Expanding access to first-line ART should confer the anticipated public health benefits in Uganda, despite known differences in the pathogenesis of HIV-1 subtypes. Furthermore, the impact of ART may actually be enhanced by frequent inter-subtype recombination in this region.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , VIH-1/genética , Recombinación Genética , Adolescente , Adulto , Teorema de Bayes , Estudios de Cohortes , Estudios Transversales , Farmacorresistencia Viral , Femenino , Genotipo , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/clasificación , Humanos , Masculino , Análisis de Secuencia de ADN , Insuficiencia del Tratamiento , Uganda , Adulto Joven
13.
AIDS Res Ther ; 14(1): 55, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28893277

RESUMEN

Vesicular stomatitis virus (VSV), like many other Rhabdoviruses, have become the focus of intense research over the past couple of decades based on their suitability as vaccine vectors, transient gene delivery systems, and as oncolytic viruses for cancer therapy. VSV as a vaccine vector platform has multiple advantages over more traditional viral vectors including low level, non-pathogenic replication in diverse cell types, ability to induce both humoral and cell-mediate immune responses, and the remarkable expression of foreign proteins cloned into multiple intergenic sites in the VSV genome. The utility and safety of VSV as a vaccine vector was recently demonstrated near the end of the recent Ebola outbreak in West Africa where VSV pseudotyped with the Ebola virus (EBOV) glycoprotein was proven safe in humans and provided protective efficacy against EBOV in a human phase III clinical trial. A team of Canadian scientists, led by Dr. Gary Kobinger, is now working with International AIDS Vaccine Initiative (IAVI) in developing a VSV-based HIV vaccine that will combine unique Canadian research on the HIV-1 Env glycoprotein and on the VSV vaccine vector. The goal of this collaboration is to develop a vaccine with a robust and potent anti-HIV immune response with an emphasis on generating quality antibodies to protect against HIV challenges.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/biosíntesis , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Virus de la Estomatitis Vesicular Indiana/genética , Vacunas contra el SIDA/genética , Animales , Vectores Genéticos , Cobayas , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/genética , Humanos , Inmunidad Humoral , Macaca , Ratones , Virus de la Estomatitis Vesicular Indiana/inmunología
14.
Retrovirology ; 13(1): 82, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27894306

RESUMEN

BACKGROUND: Vaccination with inactivated (killed) whole-virus particles has been used to prevent a wide range of viral diseases. However, for an HIV vaccine this approach has been largely negated due to inherent safety concerns, despite the ability of killed whole-virus vaccines to generate a strong, predominantly antibody-mediated immune response in vivo. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence for the Env signal peptide with that of honeybee melittin signal peptide to produce a less virulent and more replication efficient virus. This genetically modified virus (gmHIV-1NL4-3) was inactivated and formulated as a killed whole-HIV vaccine, and then used for a Phase I human clinical trial (Trial Registration: Clinical Trials NCT01546818). The gmHIV-1NL4-3 was propagated in the A3.01 human T cell line followed by virus purification and inactivation with aldrithiol-2 and γ-irradiation. Thirty-three HIV-1 positive volunteers receiving cART were recruited for this observer-blinded, placebo-controlled Phase I human clinical trial to assess the safety and immunogenicity. RESULTS: Genetically modified and killed whole-HIV-1 vaccine, SAV001, was well tolerated with no serious adverse events. HIV-1NL4-3-specific PCR showed neither evidence of vaccine virus replication in the vaccine virus-infected human T lymphocytes in vitro nor in the participating volunteers receiving SAV001 vaccine. Furthermore, SAV001 with adjuvant significantly increased the pre-existing antibody response to HIV-1 proteins. Antibodies in the plasma of vaccinees were also found to recognize HIV-1 envelope protein on the surface of infected cells as well as showing an enhancement of broadly neutralizing antibodies inhibiting tier I and II of HIV-1 B, D, and A subtypes. CONCLUSION: The killed whole-HIV vaccine, SAV001, is safe and triggers anti-HIV immune responses. It remains to be determined through an appropriate trial whether this immune response prevents HIV infection.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes/sangre , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/prevención & control , VIH-1/inmunología , Inmunogenicidad Vacunal , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Vacunas contra el SIDA/inmunología , Adulto , Animales , Anticuerpos Neutralizantes/inmunología , Abejas/genética , Femenino , Productos del Gen nef/genética , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Masculino , Persona de Mediana Edad , Señales de Clasificación de Proteína , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Proteínas Reguladoras y Accesorias Virales/genética , Adulto Joven
15.
Antimicrob Agents Chemother ; 60(6): 3380-97, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27001818

RESUMEN

Most patients failing antiretroviral treatment in Uganda continue to fail their treatment regimen even if a dominant drug-resistant HIV-1 genotype is not detected. In a recent retrospective study, we observed that approximately 30% of HIV-infected individuals in the Joint Clinical Research Centre (Kampala, Uganda) experienced virologic failure with a susceptible HIV-1 genotype based on standard Sanger sequencing. Selection of minority drug-resistant HIV-1 variants (not detectable by Sanger sequencing) under antiretroviral therapy pressure can lead to a shift in the viral quasispecies distribution, becoming dominant members of the virus population and eventually causing treatment failure. Here, we used a novel HIV-1 genotyping assay based on deep sequencing (DeepGen) to quantify low-level drug-resistant HIV-1 variants in 33 patients failing a first-line antiretroviral treatment regimen in the absence of drug-resistant mutations, as screened by standard population-based Sanger sequencing. Using this sensitive assay, we observed that 64% (21/33) of these individuals had low-frequency (or minority) drug-resistant variants in the intrapatient HIV-1 population, which correlated with treatment failure. Moreover, the presence of these minority HIV-1 variants was associated with higher intrapatient HIV-1 diversity, suggesting a dynamic selection or fading of drug-resistant HIV-1 variants from the viral quasispecies in the presence or absence of drug pressure, respectively. This study identified low-frequency HIV drug resistance mutations by deep sequencing in Ugandan patients failing antiretroviral treatment but lacking dominant drug resistance mutations as determined by Sanger sequencing methods. We showed that these low-abundance drug-resistant viruses could have significant consequences for clinical outcomes, especially if treatment is not modified based on a susceptible HIV-1 genotype by Sanger sequencing. Therefore, we propose to make clinical decisions using more sensitive methods to detect minority HIV-1 variants.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Adolescente , Adulto , Femenino , Genotipo , Infecciones por VIH/genética , Humanos , Persona de Mediana Edad , Mutación/genética , ARN Viral/genética , Estudios Retrospectivos , Uganda , Adulto Joven
16.
AIDS Res Ther ; 13(1): 41, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27906032

RESUMEN

BACKGROUND: New simian-human immunodeficiency chimeric viruses with an HIV-1 env (SHIVenv) are critical for studies on HIV pathogenesis, vaccine development, and microbicide testing. Macaques are typically exposed to single CCR5-using SHIVenv which in most instances does not reflect the conditions during acute/early HIV infection (AHI) in humans. Instead of individual and serial testing new SHIV constructs, a pool of SHIVenv_B derived from 16 acute HIV-1 infections were constructed using a novel yeast-based SHIV cloning approach and then used to infect macaques. RESULTS: Even though none of the 16 SHIVenvs contained the recently reported mutations in env genes that could significantly enhance their binding affinity to RhCD4, one SHIVenv (i.e. SHIVenv_B3-PRB926) established infection in macaques exposed to this pool. AHI SHIVenv_B viruses as well as their HIVenv_B counterparts were analyzed for viral protein content, function, and fitness to identify possible difference between SHIVenv_B3-PRB926 and the other 15 SHIVenvs in the pool. All of the constructs produced SHIV or HIV chimeric with wild type levels of capsid (p27 and p24) content, reverse transcriptase (RT) activity, and expressed envelope glycoproteins that could bind to cell receptors CD4/CCR5 and mediate virus entry. HIV-1env_B chimeric viruses were propagated in susceptible cell lines but the 16 SHIVenv_B variants showed only limited replication in macaque peripheral blood mononuclear cells (PBMCs) and 174×CEM.CCR5 cell line. AHI chimeric viruses including HIVenv_B3 showed only minor variations in cell entry efficiency and kinetics as well as replicative fitness in human PBMCs. Reduced number of N-link glycosylation sites and slightly greater CCR5 affinity/avidity was the only distinguishing feature of env_B3 versus other AHI env's in the pool, a feature also observed in the HIV establishing new infections in humans. CONCLUSION: Despite the inability to propagate in primary cells and cell lines, a pool of 16 SHIVenv viruses could establish infection but only one virus, SHIVenv_B3 was isolated in the macaque and then shown to repeatedly infected macaques. This SHIVenv_B3 virus did not show any distinct phenotypic property from the other 15 SHIVenv viruses but did have the fewest N-linked glycosylation sites.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Macaca mulatta/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Línea Celular , Genes env , Glicosilación , Células HEK293 , Infecciones por VIH/virología , Humanos , Mutación , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Replicación Viral/genética
17.
Retrovirology ; 12: 44, 2015 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-25997955

RESUMEN

BACKGROUND: Intersubtype recombination is a powerful driving force for HIV evolution, impacting both HIV-1 diversity within an infected individual and within the global epidemic. This study examines if viral protein function/fitness is the major constraint shaping selection of recombination hotspots in replication-competent HIV-1 progeny. A better understanding of the interplay between viral protein structure-function and recombination may provide insights into both vaccine design and drug development. RESULTS: In vitro HIV-1 dual infections were used to recombine subtypes A and D isolates and examine breakpoints in the Env glycoproteins. The entire env genes of 21 A/D recombinants with breakpoints in gp120 were non-functional when cloned into the laboratory strain, NL4-3. Likewise, cloning of A/D gp120 coding regions also produced dead viruses with non-functional Envs. 4/9 replication-competent viruses with functional Env's were obtained when just the V1-V5 regions of these same A/D recombinants (i.e. same A/D breakpoints as above) were cloned into NL4-3. CONCLUSION: These findings on functional A/D Env recombinants combined with structural models of Env suggest a conserved interplay between the C1 domain with C5 domain of gp120 and extracellular domain of gp41. Models also reveal a co-evolution within C1, C5, and ecto-gp41 domains which might explain the paucity of intersubtype recombination in the gp120 V1-V5 regions, despite their hypervariability. At least HIV-1 A/D intersubtype recombination in gp120 may result in a C1 from one subtype incompatible with a C5/gp41 from another subtype.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/genética , Recombinación Genética , Genotipo , Proteína gp120 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/química , Humanos , Modelos Moleculares , Conformación Proteica
18.
AIDS Res Ther ; 12: 34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26435727

RESUMEN

BACKGROUND: CCR5-using (r5) HIV-1 predominates during asymptomatic disease followed by occasional emergence of CXCR4-using (x4) or dual tropic (r5x4) virus. We examined the contribution of the x4 and r5 components to replicative fitness of HIV-1 isolates. METHODS: Dual tropic r5x4 viruses were predicted from average HIV-1 env sequences of two primary subtype C HIV-1 isolates (C19 and C27) and from two patient plasma samples (B12 and B19). Chimeric Env viruses with an NL4-3 backbone were constructed from the B12 and B19 env sequences. To determine replicative fitness, these primary and chimeric dual tropic HIV-1 were then competed against HIV-1 reference isolates in U87.CD4 cells expressing CXCR4 or CCR5 or in PBMCs ± entry inhibitors. Contribution of the x4 and r5 clones within the quasispecies of these chimeric or primary HIV-1 isolates were then compared to the frequency of x4, r5, and dual tropic clones within the quasispecies as predicted by phenotypic assays, clonal sequencing, and 454 deep sequencing. RESULTS: In the primary HIV-1 isolates (C19 and C27), subtype C dual tropic clones dominated over x4 clones while pure r5 clones were absent. In two subtype B chimeric viruses (B12 and B19), r5 clones were >100-fold more abundant than x4 or r5/x4 clones. The dual tropic C19 and C27 HIV-1 isolates outcompeted r5 primary HIV-1 isolates, B2 and C3 in PBMCs. When AMD3100 was added or when only U87.CD4.CCR5 cells were used, the B2 and C3 reference viruses now out-competed the r5 component of the dual tropic C19 and C27. In contrast, the same replicative fitness was observed with dualtropic B12 and B19 HIV-1 isolates relative to x4 HIV-1 A8 and E6 or the r5 B2 and C3 viruses, even when the r5 or x4 component was inhibited by maraviroc (or AMD3100) or in U87.CD4.CXCR4 (or CCR5) cells. CONCLUSIONS: In the dual tropic HIV-1 isolates, the x4 replicative fitness is higher than r5 clones but the x4 or x4/r5 clones are typically at low frequency in the intrapatient virus population. Ex vivo HIV propagation promotes outgrowth of the x4 clones and provides an over-estimate of x4 dominance in replicative fitness within dual tropic viruses.

19.
J Virol ; 87(2): 923-34, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23135713

RESUMEN

Maraviroc (MVC) is a CCR5 antagonist that inhibits HIV-1 entry by binding to the coreceptor and inducing structural alterations in the extracellular loops. In this study, we isolated MVC-resistant variants from an HIV-1 primary isolate that arose after 21 weeks of tissue culture passage in the presence of inhibitor. gp120 sequences from passage control and MVC-resistant cultures were cloned into NL4-3 via yeast-based recombination followed by sequencing and drug susceptibility testing. Using 140 clones, three mutations were linked to MVC resistance, but none appeared in the V3 loop as was the case with previous HIV-1 strains resistant to CCR5 antagonists. Rather, resistance was dependent upon a single mutation in the C4 region of gp120. Chimeric clones bearing this N425K mutation replicated at high MVC concentrations and displayed significant shifts in 50% inhibitory concentrations (IC(50)s), characteristic of resistance to all other antiretroviral drugs but not typical of MVC resistance. Previous reports on MVC resistance describe an ability to use a drug-bound form of the receptor, leading to reduction in maximal drug inhibition. In contrast, our structural models on K425 gp120 suggest that this resistant mutation impacts CD4 interactions and highlights a novel pathway for MVC resistance.


Asunto(s)
Fármacos Anti-VIH/farmacología , Ciclohexanos/farmacología , Farmacorresistencia Viral , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/efectos de los fármacos , VIH-1/genética , Mutación Missense , Triazoles/farmacología , Análisis Mutacional de ADN , VIH-1/aislamiento & purificación , Humanos , Maraviroc , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Pase Seriado , Cultivo de Virus
20.
J Virol ; 87(2): 890-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23135721

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) transmission results from infection with one or a small number of variants from the donor quasispecies. Transmitted/founder (T/F) viruses have recently been identified from acutely infected patients, but the way in which they interact with primary targets of HIV-1 infection is poorly understood. We have conducted a biological characterization of a panel of subtype B T/F acute and chronic envelope (Env)-expressing chimeric virus in primary human target cells and mucosal tissues. Both acute and chronic Envs preferentially replicated in peripheral blood mononuclear cells (PBMC) and a CD4 T-cell line compared to monocyte-derived macrophages, or dendritic cells (DC). In a model of trans infection from monocyte-derived dendritic cells to T cells, chimeric virus from acute Envs achieved significantly lower titers compared to chronic Envs. Challenge of primary human mucosal tissues revealed significantly higher levels of replication in chronic Env-expressing virus in rectal tissue compared to cervical and penile tissues and enhanced replication in tonsillar tissue relative to acute Envs. In agreement with data from the DC to T-cell trans infection assay, chronic Env-chimeric virus pools were transmitted more efficiently by migratory cells from cervical and penile tissues to CD4(+) T cells than individual acute Env chimeras. These data indicate that virus with HIV-1 Envs of transmitted acute infections preferentially replicate in T cells rather than macrophages or dendritic cells and are less efficiently transmitted from antigen-presenting cells to CD4 T cells than chronic Envs. Such properties together with chemokine (C-C motif) receptor 5 (CCR5) use may confer an advantage for transmission.


Asunto(s)
VIH-1/fisiología , Membrana Mucosa/virología , Tropismo Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Cuello del Útero/virología , Células Dendríticas/virología , Femenino , Genotipo , VIH-1/genética , VIH-1/crecimiento & desarrollo , Humanos , Leucocitos Mononucleares/virología , Macrófagos/virología , Masculino , Pene/virología , Recto/virología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA