Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101918

RESUMEN

Metabolites exuded by primary producers comprise a significant fraction of marine dissolved organic matter, a poorly characterized, heterogenous mixture that dictates microbial metabolism and biogeochemical cycling. We present a foundational untargeted molecular analysis of exudates released by coral reef primary producers using liquid chromatography-tandem mass spectrometry to examine compounds produced by two coral species and three types of algae (macroalgae, turfing microalgae, and crustose coralline algae [CCA]) from Mo'orea, French Polynesia. Of 10,568 distinct ion features recovered from reef and mesocosm waters, 1,667 were exuded by producers; the majority (86%) were organism specific, reflecting a clear divide between coral and algal exometabolomes. These data allowed us to examine two tenets of coral reef ecology at the molecular level. First, stoichiometric analyses show a significantly reduced nominal carbon oxidation state of algal exometabolites than coral exometabolites, illustrating one ecological mechanism by which algal phase shifts engender fundamental changes in the biogeochemistry of reef biomes. Second, coral and algal exometabolomes were differentially enriched in organic macronutrients, revealing a mechanism for reef nutrient-recycling. Coral exometabolomes were enriched in diverse sources of nitrogen and phosphorus, including tyrosine derivatives, oleoyl-taurines, and acyl carnitines. Exometabolites of CCA and turf algae were significantly enriched in nitrogen with distinct signals from polyketide macrolactams and alkaloids, respectively. Macroalgal exometabolomes were dominated by nonnitrogenous compounds, including diverse prenol lipids and steroids. This study provides molecular-level insights into biogeochemical cycling on coral reefs and illustrates how changing benthic cover on reefs influences reef water chemistry with implications for microbial metabolism.


Asunto(s)
Antozoos/metabolismo , Materia Orgánica Disuelta/análisis , Algas Marinas/metabolismo , Animales , Antozoos/genética , Antozoos/crecimiento & desarrollo , Carbono/metabolismo , Arrecifes de Coral , Ecosistema , Biología Marina/métodos , Metabolómica/métodos , Nitrógeno/metabolismo , Nutrientes , Fósforo/metabolismo , Polinesia , Agua de Mar/química , Algas Marinas/genética , Algas Marinas/crecimiento & desarrollo
2.
Proc Biol Sci ; 290(2009): 20231476, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37848062

RESUMEN

Reef-building crustose coralline algae (CCA) are known to facilitate the settlement and metamorphosis of scleractinian coral larvae. In recent decades, CCA coverage has fallen globally and degrading environmental conditions continue to reduce coral survivorship, spurring new restoration interventions to rebuild coral reef health. In this study, naturally produced chemical compounds (metabolites) were collected from two pantropical CCA genera to isolate and classify those that induce coral settlement. In experiments using four ecologically important Caribbean coral species, we demonstrate the applicability of extracted, CCA-derived metabolites to improve larval settlement success in coral breeding and restoration efforts. Tissue-associated CCA metabolites induced settlement of one coral species, Orbicella faveolata, while metabolites exuded by CCA (exometabolites) induced settlement of three species: Acropora palmata, Colpophyllia natans and Orbicella faveolata. In a follow-up experiment, CCA exometabolites fractionated and preserved using two different extraction resins induced the same level of larval settlement as the unfractionated positive control exometabolites. The fractionated CCA exometabolite pools were characterized using liquid chromatography tandem mass spectrometry, yielding 145 distinct molecular subnetworks that were statistically defined as CCA-derived and could be classified into 10 broad chemical classes. Identifying these compounds can reveal their natural prevalence in coral reef habitats and facilitate the development of new applications to enhance larval settlement and the survival of coral juveniles.


Asunto(s)
Antozoos , Animales , Larva , Señales (Psicología) , Arrecifes de Coral , Ecosistema
3.
Proc Natl Acad Sci U S A ; 117(24): 13588-13595, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482859

RESUMEN

Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.


Asunto(s)
Antozoos/metabolismo , Chlorophyta/metabolismo , Animales , Antozoos/química , Antozoos/microbiología , Antozoos/parasitología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Chlorophyta/química , Arrecifes de Coral , Ecosistema , Metagenómica , Microbiota
4.
Commun Biol ; 7(1): 160, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351328

RESUMEN

Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Arrecifes de Coral , Calor , Agua
5.
Front Microbiol ; 12: 659315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322097

RESUMEN

Structurally diverse, specialized lipids are crucial components of microbial membranes and other organelles and play essential roles in ecological functioning. The detection of such lipids in the environment can reveal not only the occurrence of specific microbes but also the physicochemical conditions to which they are adapted to. Traditionally, liquid chromatography coupled with mass spectrometry allowed for the detection of lipids based on chromatographic separation and individual peak identification, resulting in a limited data acquisition and targeting of certain lipid groups. Here, we explored a comprehensive profiling of microbial lipids throughout the water column of a marine euxinic basin (Black Sea) using ultra high-pressure liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS). An information theory framework combined with molecular networking based on the similarity of the mass spectra of lipids enabled us to capture lipidomic diversity and specificity in the environment, identify novel lipids, differentiate microbial sources within a lipid group, and discover potential biomarkers for biogeochemical processes. The workflow presented here allows microbial ecologists and biogeochemists to process quickly and efficiently vast amounts of lipidome data to understand microbial lipids characteristics in ecosystems.

6.
Front Microbiol ; 12: 659302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367080

RESUMEN

Lipids, as one of the main building blocks of cells, can provide valuable information on microorganisms in the environment. Traditionally, gas or liquid chromatography coupled to mass spectrometry (MS) has been used to analyze environmental lipids. The resulting spectra were then processed through individual peak identification and comparison with previously published mass spectra. Here, we present an untargeted analysis of MS1 spectral data generated by ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry of environmental microbial communities. Rather than attempting to relate each mass spectrum to a specific compound, we have treated each mass spectrum as a component, which can be clustered together with other components based on similarity in their abundance depth profiles through the water column. We present this untargeted data visualization method on lipids of suspended particles from the water column of the Black Sea, which included >14,000 components. These components form clusters that correspond with distinct microbial communities driven by the highly stratified water column. The clusters include both known and unknown compounds, predominantly lipids, demonstrating the value of this rapid approach to visualize component distributions and identify novel lipid biomarkers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA