Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901707

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-ß (Aß) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aß. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aß interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aß aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aß-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.


Asunto(s)
Enfermedad de Alzheimer , Péptidos de Penetración Celular , Enfermedades Neurodegenerativas , Animales , Humanos , Péptidos de Penetración Celular/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Señales de Clasificación de Proteína , Proteínas tau/metabolismo , Mamíferos/metabolismo
2.
FASEB J ; 31(3): 975-988, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881484

RESUMEN

Scavenger receptors (SRs) are a large family of multifunctional receptors that are involved in a range of physiologic and pathologic processes. The ability of class A scavenger receptors (SR-As) to bind anionic ligands facilitates the internalization of negatively charged cell-penetrating peptide (CPP)-nucleic acid nanocomplexes and thus makes them attractive targets for delivery of various nucleic acids. Recently, we demonstrated that SR-A3 and SR-A5 are recruited from intracellular membranes to the plasma membrane after incubation with PepFect 14-splice-switching oligonucleotide complexes. Here, we examined the mechanisms responsible for translocation of SR-As to the cell surface. We demonstrate that, in addition to nanocomplexes, some amphipathic CPPs are able to induce externalization of SR-A3 and SR-A5, and this process requires the presence of calcium ions. Furthermore, translocation of SR-A3 and SR-A5 requires activity of phosphatidylinositol-3-kinase, intact actin cytoskeleton, and the presence of serum proteins in culture medium.-Juks, C., Lorents, A., Arukuusk, P., Langel, Ü., Pooga, M. Cell-penetrating peptides recruit type A scavenger receptors to the plasma membrane for cellular delivery of nucleic acids.


Asunto(s)
Membrana Celular/metabolismo , Péptidos de Penetración Celular/farmacología , Lipopéptidos/farmacología , Receptores Depuradores/metabolismo , Citoesqueleto de Actina/metabolismo , Señalización del Calcio , Membrana Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Células HeLa , Humanos , Lipopéptidos/química , Nanoestructuras/química , Ácidos Nucleicos/química , Fosfatidilinositol 3-Quinasas/metabolismo
3.
Biochim Biophys Acta ; 1858(8): 1860-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27117133

RESUMEN

Cell-penetrating peptides (CPPs) are considered as one of the most promising tools to mediate the cellular delivery of various biologically active compounds that are otherwise cell impermeable. CPPs can internalize into cells via two different pathways - endocytosis and direct translocation across the plasma membrane. In both cases, the initial step of internalization requires interactions between CPPs and different plasma membrane components. Despite the extensive research, it is not yet fully understood, which of these cell surface molecules mediate the direct translocation of CPPs across the plasma- and endosomal membrane. In the present study we used giant plasma membrane vesicles (GPMVs) as a model membrane system to elucidate the specific molecular mechanisms behind the internalization and the role of cell surface glycosaminoglycans (GAGs) in the translocation of four well-known CPPs, classified as cationic (nona-arginine, Tat peptide) and amphipathic (transportan and TP10). We demonstrate here that GAGs facilitate the translocation of amphipathic CPPs, but not the internalization of cationic CPPs; and that the uptake is not mediated by a specific GAG class, but rather the overall amount of these polysaccharides is crucial for the internalization of amphipathic peptides.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Glicosaminoglicanos/fisiología , Vesículas Transportadoras/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Galanina/metabolismo , Liasa de Heparina/farmacología , Humanos , Oligopéptidos/metabolismo , Fragmentos de Péptidos/metabolismo , Transporte de Proteínas , Receptores Adrenérgicos beta 1/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Transportadoras/química , Venenos de Avispas/metabolismo , Aglutininas del Germen de Trigo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
4.
Biochim Biophys Acta ; 1848(12): 3205-16, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26409186

RESUMEN

Cell penetrating peptides are efficient tools to deliver various bioactive cargos into cells, but their exact functioning mechanism is still debated. Recently, we showed that a delivery peptide PepFect14 condenses oligonucleotides (ON) into negatively charged nanocomplexes that are taken up by cells via class A scavenger receptors (SR-As). Here we unraveled the uptake mechanism and intracellular trafficking of PF14-ON nanocomplexes in HeLa cells. Macropinocytosis and caveolae-mediated endocytosis are responsible for the intracellular functionality of nucleic acids packed into nanocomplexes. However, only a negligible fraction of the complexes were trafficked to endoplasmic reticulum or Golgi apparatus - the common destinations of caveolar endocytosis. Neither were the PF14-SCO nanocomplexes routed to endo-lysosomal pathway, and they stayed in vesicles with slightly acidic pH, which were not marked with LysoSensor. "Naked" ON, in contrary, was rapidly targeted to acidic vesicles and lysosomes. The transmission electron microscopy analysis of interactions between SR-As and PF14-ON nanocomplexes on ultrastructural level revealed that nanocomplexes localized on the plasma membrane in close proximity to SR-As and their colocalization is retained in cells, suggesting that PF14-ON complexes associate with targeted receptors.


Asunto(s)
Endocitosis , Nanoestructuras , Ácidos Nucleicos/metabolismo , Receptores Depuradores/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endosomas/metabolismo , Células HeLa , Humanos
5.
Mol Pharm ; 13(1): 172-9, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26561739

RESUMEN

Nucleic acids are highly promising candidates for the treatment of various genetic diseases. However, due to the large size and negative charge, nucleic acids are not efficiently taken up by cells, and thus, their clinical potential remains limited so far. Therefore, various delivery vehicles have been designed to assist the cellular uptake of nucleic acids. Among these, cell-penetrating peptides (CPPs) have gained increasing popularity as efficient and nontoxic delivery vectors. CPPs can be coupled to nucleic acids either by covalent or noncovalent association. Noncovalent coupling, which is based on the formation of nanoparticle-like nanocomplexes (NP), has received much attention in recent years, and the number of studies employing the strategy is explosively increasing due to the high therapeutic potential. However, the properties of CPP/nucleic acid NPs have not been characterized in sufficient detail yet. We performed a comprehensive analysis of the size and morphology of nucleic acid nanoparticles with novel transfection peptides, PepFects (PFs) and NickFects (NFs), using negative staining transmission electron microscopy (TEM). In addition, we examined whether the attachment of fluorescence or (nano)gold label to nucleic acid affects the nanocomplex formation or its morphology. We demonstrated that transportan-10-based new generation CPPs from PF and NF families condense nucleic acids to NPs of homogeneous size and shape. The size and shape of assembled nanoparticles depend on the type of the complexed nucleic acid and the sequence of the used peptide, whereas the label on the nucleic acid does not influence the gross characteristics of formed NPs.


Asunto(s)
Péptidos de Penetración Celular/química , Nanopartículas/química , Ácidos Nucleicos/química , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura
6.
Biochim Biophys Acta ; 1838(12): 3118-29, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25135660

RESUMEN

Cell-penetrating peptides with the ability to escape endosomes and reach the target are of great value as delivery vectors for different bioactive cargoes and future treatment of human diseases. We have studied two such peptides, NickFect1 and NickFect51, both originated from stearylated transportan10 (PF3). To obtain more insight into the mechanism(s) of peptide delivery and the biophysical properties of an efficient vector system, we investigated the effect of different bioactive oligonucleotide cargoes on peptide-membrane perturbation and peptide structural induction. We studied the membrane interactions of the peptides with large unilamellar vesicles and compared their effects with parent peptides transportan10 and PF3. In addition, cellular uptake and peptide-mediated oligonucleotide delivery were analyzed. Calcein leakage experiments showed that similar to transportan10, NickFect51 caused a significant degree of membrane leakage, whereas NickFect1, similar to PF3, was less membrane perturbing. The results are in agreement with previously published results indicating that NickFect51 is a more efficient endosomal escaper. However, the presence of a large cargo like plasmid DNA inhibited NickFect's membrane perturbation and cellular uptake efficiency of the peptide was reduced. We conclude that the pathway for cellular uptake of peptide complexes is cargo dependent, whereas the endosomal escape efficacy depends on peptide hydrophobicity and chemical structure. For small interfering RNA delivery, NickFect51 appears to be optimal. The biophysical signature shows that the peptide alone causes membrane perturbation, but the cargo complex does not. These two biophysical characteristics of the peptide and its cargo complex may be the signature of an efficient delivery vector system.

7.
Biochim Biophys Acta ; 1828(5): 1365-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23357356

RESUMEN

Harnessing of a branched structure is a novel approach in the design of cell-penetrating peptides and it has provided highly efficient transfection reagents for intracellular delivery of nucleic acids. The new stearylated TP10 analogs, NickFects, condense plasmid DNA, splice correcting oligonucleotides and short interfering RNAs into stable nanoparticles with a size of 62-160nm. Such nanoparticles have a negative surface charge (-11 to -18mV) in serum containing medium and enable highly efficient gene expression, splice correction and gene silencing. One of the novel peptides, NickFect51 is capable of transfecting plasmid DNA into a large variety of cell lines, including refractory suspension and primary cells and in several cases exceeds the transfection level of commercially available reagent Lipofectamine™ 2000 without any cytotoxic side effects. Additionally we demonstrate the advantages of NickFect51 in a protein production system, QMCF technology, for expression and production of recombinant proteins in hardly transfectable suspension cells.


Asunto(s)
Péptidos de Penetración Celular/química , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Ácidos Nucleicos/genética , Secuencia de Aminoácidos , Animales , Células CHO , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cultivadas , Cricetinae , Cricetulus , Vectores Genéticos/química , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Luciferasas/genética , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/ultraestructura , Oligonucleótidos/genética , Plásmidos/química , Plásmidos/genética , ARN Interferente Pequeño/genética , Ácidos Esteáricos/química , Transfección/métodos
8.
Mol Pharm ; 11(2): 382-90, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24341621

RESUMEN

The largest obstacle to the use of oligonucleotides as therapeutic agents is the delivery of these large and negatively charged biomolecules through cell membranes into intracellular space. Mesoporous silicon (PSi) is widely recognized as a potential material for drug delivery purposes due to its several beneficial features like large surface area and pore volume, high loading capacity, biocompatibility, and biodegradability. In the present study, PSi nanoparticles stabilized by thermal oxidation or thermal carbonization and subsequently modified by grafting aminosilanes on the surface are utilized as an oligonucleotide carrier. Splice correcting oligonucleotides (SCOs), a model oligonucleotide drug, were loaded into the positively charged PSi nanoparticles with a loading degree as high as 14.3% (w/w). Rapid loading was achieved by electrostatic interactions, with the loading efficiencies reaching 100% within 5 min. The nanoparticles were shown to deliver and release SCOs, in its biologically active form, inside cells when formulated together with cell penetrating peptides (CPP). The biological effect was monitored with splice correction assay and confocal microscopy utilizing HeLa pLuc 705 cells. Furthermore, the use of PSi carrier platform in oligonucleotide delivery did not reduce the cell viability. Additionally, the SCO-CPP complexes formed in the pores of the carrier were stabilized against proteolytic digestion. The advantageous properties of protecting and releasing the cargo and the possibility to further functionalize the carrier surface make the hybrid nanoparticles a potential system for oligonucleotide delivery.


Asunto(s)
Péptidos de Penetración Celular/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Oligonucleótidos/química , Silicio/química , Estabilidad de Medicamentos , Fluorescencia , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Porosidad
9.
Bioconjug Chem ; 24(10): 1721-32, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23981119

RESUMEN

In the current work we characterize the uptake mechanism of two NickFect family members, NF51 and NF1, related to the biological activity of transfected plasmid DNA (pDNA). Both vectors condense pDNA into small negatively charged nanoparticles that transfect HeLa cells with equally high efficacy and the delivery is mediated by SCARA3 and SCARA5 receptors. NF1 condenses DNA into less homogeneous and less stable nanoparticles than NF51. NF51/pDNA nanoparticles enter the cells via macropinocytosis, while NF1/pDNA complexes use clathrin- or caveolae-mediated endocytosis and macropinocytosis. Analysis of separated endosomal compartments uncovered lysomotropic properties of NF51 that was also proven by cotransfection with chloroquine. In summary we characterize how radical modifications in peptides, such as introducing a kink in the structure of NF51 or including extra negative charge by phospho-tyrosine substitution in NF1, resulted in equally high efficacy for gene delivery, although this efficacy is achieved by using differential transfection pathways.


Asunto(s)
ADN/administración & dosificación , Péptidos/química , Plásmidos/administración & dosificación , Transfección , Clatrina/metabolismo , ADN/química , ADN/genética , Endocitosis , Células HeLa , Humanos , Nanopartículas/química , Péptidos/síntesis química , Péptidos/metabolismo , Plásmidos/química , Plásmidos/genética
10.
Mol Pharm ; 10(1): 199-210, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23186360

RESUMEN

The successful applicability of gene therapy approaches will heavily rely on the development of efficient and safe nonviral gene delivery vectors, for example, cell-penetrating peptides (CPPs). CPPs can condense oligonucleotides and plasmid DNA (pDNA) into nanoparticles, thus allowing the transfection of genetic material into cells. However, despite few promising attempts, CPP-mediated pDNA delivery has been relatively inefficient due to the unfavorable nanoparticle characteristics or the nanoparticle entrapment to endocytic compartments. In many cases, both of these drawbacks could be alleviated by modifying CPPs with a stearic acid residue, as demonstrated in the delivery of both the pDNA and the short oligonucleotides. In this study, PepFect14 (PF14) peptide, previously used for the transport of shorter oligonucleotides, is demonstrated to be suited also for the delivery of pDNA. It is shown that PF14 forms stable nanoparticles with pDNA with a negative surface charge and size of around 130-170 nm. These nanoparticles facilitate efficient gene delivery and expression in a variety of regular adherent cell lines and also in difficult-to-transfect primary cells. Uptake studies indicate that PF14/pDNA nanoparticles are utilizing class A scavenger receptors (SCARA) and caveolae-mediated endocytosis as the main route for cellular internalization. Conclusively, PF14 is an efficient nonviral vector for gene delivery.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , Péptidos de Penetración Celular/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Lipopéptidos/administración & dosificación , Lipopéptidos/genética , Animales , Células CHO , Técnicas de Cultivo de Célula , Péptidos de Penetración Celular/metabolismo , Cricetinae , ADN/genética , Endocitosis/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Lipopéptidos/metabolismo , Nanopartículas/administración & dosificación , Oligonucleótidos/administración & dosificación , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Tamaño de la Partícula , Plásmidos/genética , Plásmidos/metabolismo , Transfección/métodos
11.
Pharmaceutics ; 15(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36986813

RESUMEN

mRNA-based therapeutics are presently one of the nucleic acid-based therapeutics with a high potential for extraordinary success as preventive vaccines. Current applications with mRNA therapeutics rely on lipid nanoparticle (LNP) mediated delivery of nucleic acids. In order to achieve the transition from preventive to therapeutic vaccines, there is a challenge of delivering the mRNA into non-hepatic tissues, especially into lymphoid tissues such as the spleen and lymph nodes. In this work, we characterize new cell-penetrating peptides NF424 and NF436 that exhibit preferential delivery of mRNA into the spleen after a single i.v. injection, without the use of any active targeting mechanisms. We show that between the spleen, liver, and the lungs, >95% of mRNA expression arises in the spleen tissue and the majority of expression occurs in the dendritic cells. The cell-penetrating peptides NF424 and NF436 represent promising candidates for cancer immunotherapeutic applications with tumor antigens.

12.
Pharmaceutics ; 15(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986744

RESUMEN

Despite numerous efforts over the last three decades, nucleic acid-based therapeutics still lack delivery platforms in the clinical stage. Cell-penetrating peptides (CPPs) may offer solutions as potential delivery vectors. We have previously shown that designing a "kinked" structure in the peptide backbone resulted in a CPP with efficient in vitro transfection properties. Further optimization of the charge distribution in the C-terminal part of the peptide led to potent in vivo activity with the resultant CPP NickFect55 (NF55). Currently, the impact of the linker amino acid was further investigated in the CPP NF55, with the aim to discover potential transfection reagents for in vivo application. Taking into account the expression of the delivered reporter in the lung tissue of mice, and the cell transfection in the human lung adenocarcinoma cell line, the new peptides NF55-Dap and NF55-Dab* have a high potential for delivering nucleic acid-based therapeutics to treat lung associated diseases, such as adenocarcinoma.

13.
Methods Mol Biol ; 2383: 247-253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766294

RESUMEN

The efficacy of nanoparticle drugs necessitates the high bioactivity of constituents, but the distribution of the nanoparticles in organisms is mostly determined by their physical properties. Therefore, generation of stable particles with strictly defined characteristics is highly essential. Here we describe a formulation protocol of stable and homogenous CPP/pDNA nanoparticles for in vivo applications.


Asunto(s)
Nanopartículas , Péptidos de Penetración Celular , Plásmidos
14.
Int J Pept Res Ther ; 28(1): 7, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34867130

RESUMEN

We study the effect of the peptide QAKTFLDKFNHEAEDLFYQ on the kinetics of the SARS-CoV-2 spike protein S1 binding to angiotensin-converting enzyme 2 (ACE2), with the aim to characterize the interaction mechanism of the SARS-CoV2 virus with its host cell. This peptide corresponds to the sequence 24-42 of the ACE2 α1 domain, which marks the binding site for the S1 protein. The kinetics of S1-ACE2 complex formation was measured in the presence of various concentrations of the peptide using bio-layer interferometry. Formation of the S1-ACE2 complex was inhibited by the peptide in cases where it was preincubated with S1 protein before the binding experiment. The kinetic analysis of S1-ACE2 complex dissociation revealed that preincubation stabilized this complex, and this effect was dependent on the peptide concentration as well as the preincubation time. The results point to the formation of the ternary complex of S1 with ACE2 and the peptide. This is possible in the presence of another binding site for the S1 protein beside the receptor-binding domain for ACE2, which binds the peptide QAKTFLDKFNHEAEDLFYQ. Therefore, we conducted computational mapping of the S1 protein surface, revealing two additional binding sites located at some distance from the main receptor-binding domain on S1. We suggest the possibility to predict and test the short protein derived peptides for development of novel strategies in inhibiting virus infections. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10324-7.

15.
Pharmaceutics ; 14(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145697

RESUMEN

Therapeutic proteins are currently at the apex of innovation in pharmaceutical medicine. However, their industrial production is technically challenging and improved methods for transient transfection of mammalian cell cultures are necessary. We aimed to find a fast, microliter-scale transfection assay that allows the prediction of protein expression in the transient production settings. We used an array of lipid, polymeric and cell-penetrating peptide transfection reagents, and compared their performance in various high throughput transfection assays to their performance in protein (antibody) expression in professional protein-producer cell lines. First, we show that some of the most frequently used microliter-scale transfection efficacy assays fail to predict performance in the protein production in milliliter and liter scale settings. We found that CHO suspension culture post-transfection EGFP(+) population and SEAP quantitation correlate with large-scale protein production, whereas the adhesion culture assays and transfection of pLuc are non-predictive. Second, we demonstrated that cell-penetrating peptide-based transfection achieves significantly higher protein yields compared to PEI and lipoplex methods in both CHO and HEK293 producer cell lines. In this work we demonstrate a CPP-based transient protein expression approach that significantly outperformed the current industry standard workhorse method of PEI.

16.
Bioconjug Chem ; 22(11): 2255-62, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21978260

RESUMEN

Cell-penetrating peptide based vehicles have been developed for the delivery of different payloads into the cells in culture and in animals. However, several biological features, among which is the tendency to trigger innate immune response, limit the development of highly efficient peptide-based drug delivery vectors. This study aims to evaluate the influence of transportan 10 (TP10) and its chemically modified derivatives, PepFects (PFs), on the innate immune response of the host system. PFs have shown high efficiency in nucleic acid delivery in vitro and in vivo; hence, the estimation of their possible toxic side effects would be of particular interest. In this study, we analyzed cytotoxic and immunogenic response of PF3, PF4, and PF6 peptides in monocytic leukemia and peripheral blood mononuclear cell lines. In comparison with amphipathic PFs, TP10, TAT, stearyl-(RxR)(4) peptides, and the most widely used transfection reagents Lipofectamine 2000 and Lipofectamine RNAiMAX were also analyzed in this study. IL-1ß, IL-18, and TNF-α cytokine release was detected using highly sensitive enzyme-linked immunosorbent assay (ELISA). Cell viability was detected by measuring the activity of cellular enzymes that reduce water-soluble tetrazolium salts to formazan dyes and apoptosis was evaluated by measuring the levels of caspase-1 and caspase-3/7 over untreated cells. All peptides were found to be nontoxic and nonimmunogenic in vitro at the concentrations of 10 µM and 5 µM, respectively, and at a dose of 5 mg/kg in vivo, suggesting that these CPPs exhibit a promising potential in the delivery of therapeutic molecules into the cell without risks of toxicity and inflammatory reactions.


Asunto(s)
Péptidos de Penetración Celular/inmunología , Péptidos de Penetración Celular/toxicidad , Portadores de Fármacos/toxicidad , Galanina/inmunología , Galanina/toxicidad , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/toxicidad , Venenos de Avispas/inmunología , Venenos de Avispas/toxicidad , Animales , Caspasas/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/genética , Células Cultivadas , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Galanina/química , Humanos , Interleucina-18/inmunología , Interleucina-1beta/inmunología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Lipopéptidos/química , Lipopéptidos/inmunología , Lipopéptidos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/química , Transfección , Factor de Necrosis Tumoral alfa/inmunología , Venenos de Avispas/química
17.
Front Pharmacol ; 12: 716226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504427

RESUMEN

Peptides can be used as research tools and for diagnostic or therapeutic applications. Peptides, alongside small molecules and antibodies, are used and are gaining further interest as protein-protein interaction (PPI) modulators. Peptides have high target specificity and high affinity, but, unlike small molecule modulators, they are not able to cross the cell membranes to reach their intracellular targets. To overcome this limitation, the special property of the cell-penetrating peptides (CPPs) could benefit their cause. CPPs are a class of peptides that can enter the cells and with them also deliver the attached cargoes. Today, with the advancement of in silico prediction tools and the availability of protein databases, designing new and multifunctional peptides that are able to reach intracellular targets and inhibit certain cellular processes in a very specific manner is reachable. Although there are several efficient CPP sequences already known, the discovery of new CPPs is crucial for the development of efficient delivery methods for both biotechnological and therapeutic applications. In this work, we chose 10 human nuclear proteins from which we predicted new potential CPP sequences by using three different CPP predictors: cell-penetrating peptide prediction tool, CellPPD, and SkipCPP-Pred. From each protein, one predicted CPP sequence was synthesized and its internalization into cells was assessed. Out of the tested sequences, three peptides displayed features characteristic to CPPs. These peptides and also the predicted peptide sequences could be used to design and modify new CPPs. In this work, we show that we can use protein sequences as input for generating new peptides with cell internalization properties. Three new CPPs, AHRR8-24, CASC3251-264, and AKIP127-37, can be further used for the delivery of other cargoes or designed into multifunctional peptides with capability of internalizing cells.

18.
Pharmaceutics ; 13(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34683911

RESUMEN

Gene therapy is a powerful tool for the development of new treatment strategies for various conditions, by aiming to transport biologically active nucleic acids into diseased cells. To achieve that goal, we used highly potential delivery vectors, cell-penetrating peptides (CPPs), as oligonucleotide carriers for the development of a therapeutic approach for endometriosis and cancer. Despite marked differences, both of these conditions still exhibit similarities, like excessive, uncoordinated, and autonomous cellular proliferation and invasion, accompanied by overlapping gene expression patterns. Thus, in the current study, we investigated the therapeutic effects of CPP and siRNA nanoparticles using in vitro models of benign endometriosis and malignant glioblastoma. We demonstrated that CPPs PepFect6 and NickFect70 are highly effective in transfecting cell lines, primary cell cultures, and three-dimensional spheroids. CPP nanoparticles are capable of inducing siRNA-specific knockdown of therapeutic genes, ribonucleotide reductase subunit M2 (RRM2), and vascular endothelial growth factor (VEGF), which results in the reduction of in vitro cellular proliferation, invasion, and migration. In addition, we proved that it is possible to achieve synergistic suppression of endometriosis cellular proliferation and invasion by combining gene therapy and hormonal treatment approaches by co-administering CPP/siRNA nanoparticles together with the endometriosis-drug danazol. We suggest a novel target, RRM2, for endometriosis therapy and as a proof-of-concept, we propose a CPP-mediated gene therapy approach for endometriosis and cancer.

19.
Methods Mol Biol ; 2103: 239-247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31879930

RESUMEN

Cell-penetrating peptides (CPPs) are relatively short peptides that can enter to the cell interior and facilitate intracellular delivery of associated cargo molecules. NickFects is a novel family of CPPs, designed to deliver various types of bio-active cargos using non-covalent nanoparticle formation approach. This chapter describes in details the manual synthesis of cell-penetrating peptides using Fmoc-solid phase peptide synthesis (SPPS).


Asunto(s)
Aminoácidos/química , Péptidos de Penetración Celular/síntesis química , Técnicas de Síntesis en Fase Sólida , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/aislamiento & purificación , Técnicas de Química Sintética , Cromatografía Líquida de Alta Presión , Ácidos Grasos/química , Humanos , Nanopartículas/química , Acoplamiento Oxidativo
20.
Biomaterials ; 262: 120316, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32896817

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional gene expression regulators with potential therapeutic applications. miR-146a is a negative regulator of inflammatory processes in both tissue-resident and specialized immune cells and may therefore have therapeutic effect in inflammatory skin diseases. PepFect (PF) and NickFect (NF) type of cell-penetrating peptides (CPPs) have previously been shown to deliver miRNA mimics and/or siRNAs into cell cultures and in vivo. Here, we first demonstrate that selected PF- and NF-type of CPPs support delivery of fluorescent labelled miRNA mimics into keratinocytes (KCs) and dendritic cells (DCs). Second, we show that both PF- and NF-miR-146a nanocomplexes were equally effective in KCs, while NFs were more efficient in DCs as assessed by downregulation of miR-146a-influenced genes. None of miRNA nanocomplexes with the tested CPPs influenced the viability of KCs and DCs nor caused activation of DCs according to CD86 and CD83 markers. Transmission electron microscopy analysis with Nanogold-labelled miR-146a mimics and assessment of endocytic trafficking pathways revealed endocytosis as an active route of delivery in both KCs and DCs for all tested CPPs. However, consistent with the higher efficiency, NF-delivered miR-146a was detected more often outside endosomes in DCs. Finally, pre-injection of NF71:miR-146a nanocomplexes was confirmed to suppress inflammatory responses in a mouse model of irritant contact dermatitis as shown by reduced ear swelling response and downregulation of pro-inflammatory cytokines, including IL-6, IL-1ß, IL-33 and TNF-α. In conclusion, NF71 efficiently delivers miRNA mimics into KCs as well as DCs, and therefore may have advantage in therapeutic delivery of miRNAs in case of inflammatory skin diseases.


Asunto(s)
Péptidos de Penetración Celular , MicroARNs , Animales , Células Dendríticas , Inflamación , Queratinocitos , Ratones , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA