Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35268621

RESUMEN

Mycobacterium tuberculosis has been infecting millions of people worldwide over the years, causing tuberculosis. Drugs targeting distinct cellular mechanisms including synthesis of the cell wall, lipids, proteins, and nucleic acids in Mtb are currently being used for the treatment of TB. Although extensive research is being carried out at the molecular level in the infected host and pathogen, the identification of suitable drug targets and drugs remains under explored. Pranlukast, an allosteric inhibitor of MtArgJ (Mtb ornithine acetyltransferase) has previously been shown to inhibit the survival and virulence of Mtb. The main objective of this study was to identify the altered metabolic pathways and biological processes associated with the differentially expressed metabolites by PRK in Mtb. Here in this study, metabolomics was carried out using an LC-MS/MS-based approach. Collectively, 50 metabolites were identified to be differentially expressed with a significant p-value through a global metabolomic approach using a high-resolution mass spectrometer. Metabolites downstream of argJ were downregulated in the arginine biosynthetic pathway following pranlukast treatment. Predicted human protein interactors of pranlukast-treated Mtb metabolome were identified in association with autophagy, inflammation, DNA repair, and other immune-related processes. Further metabolites including N-acetylglutamate, argininosuccinate, L-arginine, succinate, ergothioneine, and L-phenylalanine were validated by multiple reaction monitoring, a targeted mass spectrometry-based metabolomic approach. This study facilitates the understanding of pranlukast-mediated metabolic changes in Mtb and holds the potential to identify novel therapeutic approaches using metabolic pathways in Mtb.


Asunto(s)
Mycobacterium tuberculosis , Cromatografía Liquida , Cromonas/metabolismo , Cromonas/farmacología , Humanos , Espectrometría de Masas en Tándem
2.
OMICS ; 25(7): 408-416, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34191617

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is anticipated to transition to an endemic state as vaccines are providing relief in some, but not all, countries. Drug discovery for COVID-19 can offer another tool in the fight against the pandemic. Additionally, COVID-19 impacts multiple organs that call for a systems medicine approach to planetary health and therapeutics innovation. In this context, innovation for drugs that prevent and treat COVID-19 is timely and much needed. As the virus variants emerge under different ecological conditions and contexts in the long haul, a broad array of vaccine and drug options will be necessary. This expert review article argues for a need to expand the COVID-19 interventions, including and beyond vaccines, to stimulate discovery and development of novel medicines against SARS-CoV-2 infection. The Renin-Angiotensin-Aldosterone System (RAAS) is known to play a major role in SARS-CoV-2 infection. Neprilysin (NEP) and angiotensin-converting enzyme (ACE) have emerged as the pharmaceutical targets of interest in the search for therapeutic interventions against COVID-19. While the NEP/ACE inhibitors offer promise for repurposing against COVID-19, they may display a multitude of effects in different organ systems, some beneficial, and others adverse, in modulating the inflammation responses in the course of COVID-19. This expert review offers an analysis and discussion to deepen our present understanding of the pathophysiological function of neprilysin in multiple organs, and the possible effects of NEP inhibitor-induced inflammatory responses in COVID-19-infected patients.


Asunto(s)
Neprilisina/química , Bradiquinina/genética , Bradiquinina/metabolismo , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiología , SARS-CoV-2
3.
OMICS ; 25(7): 463-473, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34227895

RESUMEN

Glioma is the most common type of brain cancer that originates from the glial cells. It constitutes about one-third of all brain cancers. Recently, transcriptomics, proteomics, and multiomics approaches have been harnessed to discover potential biomarkers and therapeutic targets in glioma. Moreover, post-translational modifications (PTMs) of proteins play a major role in cell biology and function and offer new avenues of research in cancer. Using unbiased multi-PTM bioinformatics analyses of two proteomic datasets of glioma available in the public domain, we identified 866 proteins with common PTMs from both studies. Out of these 866 proteins, 19 proteins were identified with the common PTMs, with the same site modifications pertaining to glioma. Importantly, the identified PTMs belonged to proteins involved in integrin PI3K/Akt/mTOR, JAK/STAT, and Ras/Raf/MAPK pathways. These pathways are essential for cell proliferation in tumor cells and thus involved in glioma progression. Taken together, these findings call for validation in larger datasets in glioma and brain cancers and with an eye to future drug discovery and diagnostic innovation. Bioinformatics-guided discovery of novel PTMs from the publicly available proteomic data can offer new avenues for innovation in cancer research.


Asunto(s)
Glioma , Proteómica , Biología Computacional , Glioma/genética , Humanos , Fosfatidilinositol 3-Quinasas , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA