Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144562

RESUMEN

Pectin and mucilage are polysaccharides from the cactus Opuntia ficus-indica, which are also known as hydrocolloids, with useful properties in industries such as food, pharmaceuticals, and construction, among others. In the present work, cactus hydrocolloids were hydrolyzed characterized using two techniques: first, thin-layer chromatography, to identify the monosaccharides present in the sample, followed by the phenol-sulfuric acid method to determine the monosaccharide content. The hydrolyzing method allowed us to reduce the processing time to 180 min and, considering the identification and quantification procedures, the proposed methodology is much simpler and more cost-effective compared to other methods, such as high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and mass spectrometry. The analysis of the results revealed that the maximum concentration of monosaccharides was obtained after hydrolyzing for 90 min. Under such conditions, with pectin being the main component contained in the cactus hydrocolloids analyzed here, galacturonic acid was found in the largest quantities.


Asunto(s)
Opuntia , Hidrólisis , Monosacáridos , Opuntia/química , Pectinas , Preparaciones Farmacéuticas , Fenoles , Polisacáridos/química
2.
Sensors (Basel) ; 21(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801222

RESUMEN

This article introduces a bioinspired, cicada wing-like surface-enhanced Raman scattering (SERS) substrate based on template-stripped crossed surface relief grating (TS-CSRG). The substrate is polarization-independent, has tunable nanofeatures and can be fabricated in a cleanroom-free environment via holographic exposure followed by template-stripping using a UV-curable resin. The bioinspired nanostructures in the substrate are strategically designed to minimize the reflection of light for wavelengths shorter than their periodicity, promoting enhanced plasmonic regions for the Raman excitation wavelength at 632.8 nm over a large area. The grating pitch that enables an effective SERS signal is studied using Rhodamine 6G, with enhancement factors of the order of 1 × 104. Water contact angle measurements reveal that the TS-CSRGs are equally hydrophobic to cicada wings, providing them with potential self-cleaning and bactericidal properties. Finite-difference time-domain simulations are used to validate the nanofabrication parameters and to further confirm the polarization-independent electromagnetic field enhancement of the nanostructures. As a real-world application, label-free detection of melamine up to 1 ppm, the maximum concentration of the contaminant in food permitted by the World Health Organization, is demonstrated. The new bioinspired functional TS-CSRG SERS substrate holds great potential as a large-area, label-free SERS-active substrate for medical and biochemical sensing applications.


Asunto(s)
Hemípteros , Nanoestructuras , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/toxicidad , Espectrometría Raman , Propiedades de Superficie
3.
Analyst ; 145(6): 2133-2142, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32076690

RESUMEN

The unique plasmonic energy exchange occurring within metallic crossed surface relief gratings (CSRGs) has recently motivated their use as biosensors. However, CSRG-based biosensing has been limited to spectroscopic techniques, failing to harness their potential for integration with ubiquitous portable electronics. Here, we introduce biosensing via surface plasmon resonance imaging (SPRi) enabled by CSRGs. The SPRi platform is fully integrated including optics and electronics, has bulk sensitivity of 613 Pixel Intensity Unit (PIU)/Refractive Index Unit (RIU), a resolution of 10-6 RIU and a signal-to-noise ratio of ∼33 dB. Finite-Difference Time-Domain (FDTD) simulations confirm that CSRG-enabled SPRi is supported by an electric field intensity enhancement of ∼30 times, due to plasmon resonance at the metal-dielectric interface. In the context of real-world biosensing applications, we demonstrate the rapid (<35 min) and label-free detection of uropathogenic E. coli (UPEC) in PBS and human urine samples for concentrations ranging from 103 to 109 CFU mL-1. The detection limit of the platform is ∼100 CFU mL-1, three orders of magnitude lower than the clinical detection limit for diagnosis of urinary tract infection. This work presents a new avenue for CSRGs as SPRi-based biosensing platforms and their great potential for integration with portable electronics for applications requiring in situ detection.


Asunto(s)
Infecciones por Escherichia coli/orina , Resonancia por Plasmón de Superficie/instrumentación , Escherichia coli Uropatógena/aislamiento & purificación , Diseño de Equipo , Humanos , Límite de Detección , Nanoestructuras/química , Nanoestructuras/ultraestructura , Refractometría/instrumentación , Refractometría/métodos , Resonancia por Plasmón de Superficie/métodos , Propiedades de Superficie
4.
Sensors (Basel) ; 18(11)2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30373136

RESUMEN

Urinary tract infections (UTIs) are one of the major burdens on public healthcare worldwide. One of the primary causes of UTIs is the invasion of the urinary tract by uropathogenic Escherichia coli (UPEC). Improper treatment of bacterial infections like UTIs with broad-spectrum antibiotics has contributed to the rise of antimicrobial resistance, necessitating the development of an inexpensive, rapid and accurate detection of UPEC. Here, we present real-time, selective and label-free detection of UPEC using crossed surface-relief gratings (CSRGs) as nanometallic sensors incorporated into an optical sensing platform. CSRGs enable real-time sensing due to their unique surface plasmon resonance (SPR)-based light energy exchange, resulting in detection of a very-narrow-bandwidth SPR signal after the elimination of residual incident light. The platform's sensing ability is experimentally demonstrated by the detection of bulk refractive index (RI) changes, with a bulk sensitivity of 382.2 nm/RIU and a resolution in the order of 10-6 RIU. We also demonstrate, for the first time, CSRG-based real-time selective capture and detection of UPEC in phosphate-buffered saline (PBS) solution, in clinically relevant concentrations, as opposed to other UTI-causing Gram-negative bacteria. The platform's detection limit is calculated to be 105 CFU/mL (concentration on par with the clinical threshold for UTI diagnosis), with a dynamic range spanning four orders of magnitude. This work paves the way for the development of inexpensive point-of-care diagnosis devices focusing on effective treatment of UTIs, which are a burden on public healthcare due to the rise in the number of cases and their recurrences in the recent past.


Asunto(s)
Óptica y Fotónica/métodos , Escherichia coli Uropatógena/aislamiento & purificación , Refractometría , Análisis Espectral
5.
Adv Food Nutr Res ; 105: 301-342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37516466

RESUMEN

Clinical nutrition emulsions are important products that can be life-saving for many patients suffering from gastrointestinal tract disorders, swallowing impairment, cancer, liver diseases, and many other clinical conditions. The transfer of lipids to the human body can be either intravenously (Parenteral Nutrition, PN) or through the gastrointestinal tract (Enteral Nutrition, EN). PN emulsions are considered pharmaceuticals and thus regulated accordingly. On the other hand, EN emulsions are classified as Food for Specific Medical Purposes (FSMP) and do not follow pharmaceutical regulations. Regarding product design, PN emulsions must follow theoretical emulsion formulation and production aspects, but special requirements regarding droplet size distribution must be followed to comply with national pharmacopeia monographs. Furthermore, a full clinical program on clinical evidence to prove safety and efficacy must be provided for marketing approval. On the contrary, EN emulsions require limited clinical evidence to substantiate health or clinical benefits. A short introduction to clinical nutrition with a focus on lipid emulsions is presented in this chapter. Furthermore, a general overview of the composition and main ingredients of clinical nutrition lipid emulsions is reviewed. Main clinical aspects are also mentioned here, highlighting the difficulties of clinically proving the efficacy of these products. The manufacturing and control of clinical nutrition emulsions are also reviewed, focusing on PN products and the main regulatory requirements related to the safety of these intravenous emulsions. Finally, stability and physicochemical properties are reviewed, and examples of commercially available products are used to illustrate these properties linked to the stability of these products. Lipids in clinical nutrition is a moving field and we do hope this chapter may remain a valuable source to understand newly emerging research on this topic.


Asunto(s)
Tracto Gastrointestinal , Nutrición Parenteral , Humanos , Emulsiones , Lípidos
6.
Int J Food Microbiol ; 399: 110255, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37210954

RESUMEN

High hydrostatic pressure (HHP) is a non-thermal process widely used in the food industry to reduce microbial populations. However, rarely its effect has been assessed in products with high oil content. This study evaluated the efficacy of HHP (200, 250, and 300 MPa) at different temperatures (25, 35, and 45 °C) by cycles (1, 2, or 3) of 10 min in the inactivation of Aspergillus niger spores in a lipid emulsion. After treatments at 300 MPa for 1 cycle at 35 or 45 °C, no surviving spores were recovered. All treatments were modeled by the linear and Weibull models. The presence of shoulders and tails in the treatments at 300 MPa at 35 or 45 °C resulted in sigmoidal curves which cannot be described by the linear model, hence the Weibull + Tail, Shoulder + Log-lin + Tail, and double Weibull models were evaluated to elucidate the inactivation kinetics. The tailing formation could be related to the presence of resistance subpopulations. The double Weibull model showed better goodness of fit (RMSE <0.2) to describe the inactivation kinetics of the treatments with the higher spore reductions. HHP at 200-300 MPa and 25 °C did not reduce the Aspergillus niger spores. The combined HHP and mild temperatures (35-45 °C) favored fungal spore inactivation. Spore inactivation in lipid emulsions by HHP did not follow a linear inactivation. HHP at mild temperatures is an alternative to the thermal process in lipid emulsions.


Asunto(s)
Aspergillus niger , Microbiología de Alimentos , Emulsiones/farmacología , Presión Hidrostática , Esporas Fúngicas , Lípidos , Esporas Bacterianas , Calor
7.
Food Res Int ; 161: 111902, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192999

RESUMEN

This work describes the development of an in vitro distal gastric simulator (IV-DGS), where the distal region of the human stomach was replicated. Soft membranes were fabricated to simulate the gastric walls to generate a mechanical condition close to the physiological behavior. An esophageal manometry catheter was used to record the pressure amplitude values and the pressure waveform from the contractile activity. Three different experiments, considering the conditions of the fed state, were carried out to evaluate the performance of the proposed simulator. The first one was related to the evaluation of the mixing capability by dissolving methylene blue in distilled water and aqueous solutions of guar gum.The second one was focused on evaluating the acidification rate of milk with hydrochloric acid (HCl). Finally, food disintegration was evaluated using sausage and melon as meals. The IV-DGS demonstrated the capability to reproduce a pressure range between 15 and 30 mmHg, and the waveform reproduced the propulsion and retropulsion flows which were consistent with in vivo experiments reported elsewhere (Maqbool et al., 2009). The IV-DGS produced about 75 % disintegration of the pounded sausage, which represents an improvement of more than 200 % and 35 % compared to the results obtained using the static arrays without and with agitation, respectively. These experiments demonstrated how important the mechanical dynamic conditions are to promote the chemical and mechanical reaction during in vitro digestion simulations.


Asunto(s)
Vaciamiento Gástrico , Ácido Clorhídrico , Vaciamiento Gástrico/fisiología , Humanos , Azul de Metileno , Estómago/fisiología , Agua
8.
Rev Sci Instrum ; 90(4): 045116, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31043009

RESUMEN

In this work, we present a commercial CMOS (Complementary Metal Oxide Semiconductor) Raspberry Pi camera implemented as a Near-Infrared detector for both spatial and temporal characterization of femtosecond pulses delivered from a femtosecond Erbium Doped Fiber laser (fs-EDFL) @ 1.55 µm, based on the Two Photon Absorption (TPA) process. The capacity of the device was assessed by measuring the spatial beam profile of the fs-EDFL and comparing the experimental results with the theoretical Fresnel diffraction pattern. We also demonstrate the potential of the CMOS Raspberry Pi camera as a wavefront sensor through its a nonlinear response in a Shack-Hartmann array and for the temporal characterization of the femtosecond pulses delivered from the fs-EDFL through TPA Intensity autocorrelation measurements. The direct pulse detection and measurement, through the nonlinear response with a CMOS, is proposed as a novel and affordable high-resolution and high-sensitivity alternative to costly detectors such as CCDs, wavefront sensors and beam profilers @ 1.55 µm. The measured fluence threshold, down to 17.5 µJ/cm2, and pJ/pulse energy response represents the lowest reported values applied as a beam profiler and a TPA Shack-Hartmann wavefront sensor, to our knowledge.

9.
Biosens Bioelectron ; 106: 105-110, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29414075

RESUMEN

Rapid, inexpensive and sensitive detection of uropathogenic Escherichia coli (UPEC), a common cause of ascending urinary tract infections (UTIs) including cystitis and pyelonephritis, is critical given the increasing number of cases and its recurrence worldwide. In this paper, we present a label-free nanoplasmonic sensing platform, built with off-the-shelf optical and electronic components, which can detect intact UPEC at concentrations lower than the physiological limit for UTI diagnosis, in real time. The sensing platform consists of a red LED light source, lens assembly, CMOS detector, Raspberry Pi interface in conjugation with a metallic flow-through nanohole array-based sensor. Detection is achieved exploiting nanoplasmonic phenomena from the nanohole arrays through surface plasmon resonance imaging (SPRi) technique. The platform has a bulk sensitivity of 212 pixel intensity unit (PIU)/refractive index unit (RIU), and a resolution in the order of 10-6 RIU. We demonstrate capture and detection of UPEC with a detection limit of ~100 CFU/ml - a concentration well below the threshold limit for UTI diagnosis in clinical samples. We also demonstrate detection of UPEC in spiked human urine samples for two different concentrations of bacteria. This work is particularly relevant for point-of-care applications, especially for regions around the world where accessibility to medical facilities is heavily dependent upon economy, and availability.


Asunto(s)
Técnicas Biosensibles , Infecciones por Escherichia coli/diagnóstico , Infecciones Urinarias/diagnóstico , Escherichia coli Uropatógena/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Humanos , Límite de Detección , Nanotecnología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad
10.
Med Biol Eng Comput ; 54(2-3): 525-34, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26133283

RESUMEN

We aimed to provide realistic three-dimensional (3D) models to be used in numerical simulations of peristaltic flow in patients exhibiting difficulty in swallowing, also known as dysphagia. To this end, a 3D model of the upper gastrointestinal tract was built from the color cryosection images of the Visible Human Project dataset. Regional color heterogeneities were corrected by centering local histograms of the image difference between slices. A voxel-based model was generated by stacking contours from the color images. A triangle mesh was built, smoothed and simplified. Visualization tools were developed for browsing the model at different stages and for virtual endoscopy navigation. As result, a computer model of the esophagus and the stomach was obtained, mainly for modeling swallowing disorders. A central-axis curve was also obtained for virtual navigation and to replicate conditions relevant to swallowing disorders modeling. We show renderings of the model and discuss its use for simulating swallowing as a function of bolus rheological properties. The information obtained from simulation studies with our model could be useful for physicians in selecting the correct nutritional emulsions for patients with dysphagia.


Asunto(s)
Simulación por Computador , Deglución/fisiología , Imagenología Tridimensional , Modelos Teóricos , Tracto Gastrointestinal Superior/anatomía & histología , Endoscopía , Esófago/anatomía & histología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA