Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719996

RESUMEN

Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.

2.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37522516

RESUMEN

During embryonic development, tissue-specific transcription factors and chromatin remodelers function together to ensure gradual, coordinated differentiation of multiple lineages. Here, we define this regulatory interplay in the developing retinal pigmented epithelium (RPE), a neuroectodermal lineage essential for the development, function and maintenance of the adjacent retina. We present a high-resolution spatial transcriptomic atlas of the developing mouse RPE and the adjacent ocular mesenchyme obtained by geographical position sequencing (Geo-seq) of a single developmental stage of the eye that encompasses young and more mature ocular progenitors. These transcriptomic data, available online, reveal the key transcription factors and their gene regulatory networks during RPE and ocular mesenchyme differentiation. Moreover, conditional inactivation followed by Geo-seq revealed that this differentiation program is dependent on the activity of SWI/SNF complexes, shown here to control the expression and activity of RPE transcription factors and, at the same time, inhibit neural progenitor and cell proliferation genes. The findings reveal the roles of the SWI/SNF complexes in controlling the intersection between RPE and neural cell fates and the coupling of cell-cycle exit and differentiation.


Asunto(s)
Epitelio Pigmentado de la Retina , Factores de Transcripción , Femenino , Embarazo , Ratones , Animales , Diferenciación Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proliferación Celular/genética , Epitelio/metabolismo
3.
PLoS Biol ; 21(1): e3001924, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649236

RESUMEN

Tissue-specific transcription factors (TFs) control the transcriptome through an association with noncoding regulatory regions (cistromes). Identifying the combination of TFs that dictate specific cell fate, their specific cistromes and examining their involvement in complex human traits remain a major challenge. Here, we focus on the retinal pigmented epithelium (RPE), an essential lineage for retinal development and function and the primary tissue affected in age-related macular degeneration (AMD), a leading cause of blindness. By combining mechanistic findings in stem-cell-derived human RPE, in vivo functional studies in mice and global transcriptomic and proteomic analyses, we revealed that the key developmental TFs LHX2 and OTX2 function together in transcriptional module containing LDB1 and SWI/SNF (BAF) to regulate the RPE transcriptome. Importantly, the intersection between the identified LHX2-OTX2 cistrome with published expression quantitative trait loci, ATAC-seq data from human RPE, and AMD genome-wide association study (GWAS) data, followed by functional validation using a reporter assay, revealed a causal genetic variant that affects AMD risk by altering TRPM1 expression in the RPE through modulation of LHX2 transcriptional activity on its promoter. Taken together, the reported cistrome of LHX2 and OTX2, the identified downstream genes and interacting co-factors reveal the RPE transcription module and uncover a causal regulatory risk single-nucleotide polymorphism (SNP) in the multifactorial common blinding disease AMD.


Asunto(s)
Degeneración Macular , Canales Catiónicos TRPM , Humanos , Ratones , Animales , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Estudio de Asociación del Genoma Completo , Proteómica , Degeneración Macular/genética , Degeneración Macular/metabolismo , Diferenciación Celular , Epitelio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Canales Catiónicos TRPM/genética , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo
4.
Dev Biol ; 468(1-2): 80-92, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950463

RESUMEN

The interplay between signaling molecules and transcription factors during retinal development is key to controlling the correct number of retinal cell types. Zeb2 (Sip1) is a zinc-finger multidomain transcription factor that plays multiple roles in central and peripheral nervous system development. Haploinsufficiency of ZEB2 causes Mowat-Wilson syndrome, a congenital disease characterized by intellectual disability, epilepsy and Hirschsprung disease. In the developing retina, Zeb2 is required for generation of horizontal cells and the correct number of interneurons; however, its potential function in controlling gliogenic versus neurogenic decisions remains unresolved. Here we present cellular and molecular evidence of the inhibition of Müller glia cell fate by Zeb2 in late stages of retinogenesis. Unbiased transcriptomic profiling of control and Zeb2-deficient early-postnatal retina revealed that Zeb2 functions in inhibiting Id1/2/4 and Hes1 gene expression. These neural progenitor factors normally inhibit neural differentiation and promote Müller glia cell fate. Chromatin immunoprecipitation (ChIP) supported direct regulation of Id1 by Zeb2 in the postnatal retina. Reporter assays and ChIP analyses in differentiating neural progenitors provided further evidence that Zeb2 inhibits Id1 through inhibition of Smad-mediated activation of Id1 transcription. Together, the results suggest that Zeb2 promotes the timely differentiation of retinal interneurons at least in part by repressing BMP-Smad/Notch target genes that inhibit neurogenesis. These findings show that Zeb2 integrates extrinsic cues to regulate the balance between neuronal and glial cell types in the developing murine retina.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Células Ependimogliales/metabolismo , Interneuronas/metabolismo , Retina/embriología , Transducción de Señal , Proteínas Smad/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Ratones , Ratones Transgénicos , Proteínas Smad/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
5.
Development ; 145(15)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986868

RESUMEN

The synchronized differentiation of neuronal and vascular tissues is crucial for normal organ development and function, although there is limited information about the mechanisms regulating the coordinated development of these tissues. The choroid vasculature of the eye serves as the main blood supply to the metabolically active photoreceptors, and develops together with the retinal pigmented epithelium (RPE). Here, we describe a novel regulatory relationship between the RPE transcription factors Pax6 and Sox9 that controls the timing of RPE differentiation and the adjacent choroid maturation. We used a novel machine learning algorithm tool to analyze high resolution imaging of the choroid in Pax6 and Sox9 conditional mutant mice. Additional unbiased transcriptomic analyses in mutant mice and RPE cells generated from human embryonic stem cells, as well as chromatin immunoprecipitation and high-throughput analyses, revealed secreted factors that are regulated by Pax6 and Sox9. These factors might be involved in choroid development and in the pathogenesis of the common blinding disease: age-related macular degeneration (AMD).


Asunto(s)
Diferenciación Celular , Coroides/irrigación sanguínea , Coroides/metabolismo , Neovascularización Fisiológica , Factor de Transcripción PAX6/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Factor de Transcripción SOX9/metabolismo , Algoritmos , Animales , Secuencia de Bases , Regulación del Desarrollo de la Expresión Génica , Aprendizaje Automático , Degeneración Macular/genética , Degeneración Macular/patología , Ratones Endogámicos C57BL , Modelos Biológicos , Factor de Transcripción SOX9/genética , Factores de Tiempo , Regulación hacia Arriba/genética
6.
Hum Genomics ; 13(1): 10, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770771

RESUMEN

BACKGROUND: Despite a number of different transgenes that can mediate DNA deletion in the developing lens, each has unique features that can make a given transgenic line more or less appropriate for particular studies. The purpose of this work encompasses both a review of transgenes that lead to the expression of Cre recombinase in the lens and a comparative analysis of currently available transgenic lines with a particular emphasis on the Le-Cre and P0-3.9GFPCre lines that can mediate DNA deletion in the lens placode. Although both of these transgenes are driven by elements of the Pax6 P0 promoter, the Le-Cre transgene consistently leads to ocular abnormalities in homozygous state and can lead to ocular defects on some genetic backgrounds when hemizygous. RESULT: Although both P0-3.9GFPCre and Le-Cre hemizygous transgenic mice undergo normal eye development on an FVB/N genetic background, Le-Cre homozygotes uniquely exhibit microphthalmia. Examination of the expression patterns of these two transgenes revealed similar expression in the developing eye and pancreas. However, lineage tracing revealed widespread non-ocular CRE reporter gene expression in the P0-3.9GFPCre transgenic mice that results from stochastic CRE expression in the P0-3.9GFPCre embryos prior to lens placode formation. Postnatal hemizygous Le-Cre transgenic lenses express higher levels of CRE transcript and protein than the hemizygous lenses of P0-3.9GFPCre mice. Transcriptome analysis revealed that Le-Cre hemizygous lenses deregulated the expression of 15 murine genes, several of which are associated with apoptosis. In contrast, P0-3.9GFPCre hemizygous lenses only deregulated two murine genes. No known PAX6-responsive genes or genes directly associated with lens differentiation were deregulated in the hemizygous Le-Cre lenses. CONCLUSIONS: Although P0-3.9GFPCre transgenic mice appear free from ocular abnormalities, extensive non-ocular CRE expression represents a potential problem for conditional gene deletion studies using this transgene. The higher level of CRE expression in Le-Cre lenses versus P0-3.9GFPCre lenses may explain abnormal lens development in homozygous Le-Cre mice. Given the lack of deregulation of PAX6-responsive transcripts, we suggest that abnormal eye development in Le-Cre transgenic mice stems from CRE toxicity. Our studies reinforce the requirement for appropriate CRE-only expressing controls when using CRE as a driver of conditional gene targeting strategies.


Asunto(s)
Eliminación de Gen , Integrasas/genética , Cristalino/fisiología , Ratones Transgénicos , Animales , Femenino , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Cristalino/embriología , Cristalino/fisiopatología , Ratones Endogámicos
7.
Development ; 143(22): 4182-4192, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27697904

RESUMEN

The Lim domain-binding proteins are key co-factor proteins that assemble with LIM domains of the LMO/LIM-HD family to form functional complexes that regulate cell proliferation and differentiation. Using conditional mutagenesis and comparative phenotypic analysis, we analyze the function of Ldb1 and Ldb2 in mouse retinal development, and demonstrate overlapping and specific functions of both proteins. Ldb1 interacts with Lhx2 in the embryonic retina and both Ldb1 and Ldb2 play a key role in maintaining the pool of retinal progenitor cells. This is accomplished by controlling the expression of the Vsx2 and Rax, and components of the Notch and Hedgehog signaling pathways. Furthermore, the Ldb1/Ldb2-mediated complex is essential for generation of early-born photoreceptors through the regulation of Rax and Crx. Finally, we demonstrate functional redundancy between Ldb1 and Ldb2. Ldb1 can fully compensate the loss of Ldb2 during all phases of retinal development, whereas Ldb2 alone is sufficient to sustain activity of Lhx2 in both early- and late-stage RPCs and in Müller glia. By contrast, loss of Ldb1 disrupts activity of the LIM domain factors in neuronal precursors. An intricate regulatory network exists that is mediated by Ldb1 and Ldb2, and promotes RPC proliferation and multipotency; it also controls specification of mammalian retina cells.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas con Dominio LIM/fisiología , Organogénesis/genética , Retina/embriología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Mamíferos/embriología , Mamíferos/genética , Ratones , Ratones Transgénicos , Retina/citología , Retina/metabolismo , Células Madre/fisiología
8.
Development ; 143(15): 2829-41, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385012

RESUMEN

The transcription factor Sip1 (Zeb2) plays multiple roles during CNS development from early acquisition of neural fate to cortical neurogenesis and gliogenesis. In humans, SIP1 (ZEB2) haploinsufficiency leads to Mowat-Wilson syndrome, a complex congenital anomaly including intellectual disability, epilepsy and Hirschsprung disease. Here we uncover the role of Sip1 in retinogenesis. Somatic deletion of Sip1 from mouse retinal progenitors primarily affects the generation of inner nuclear layer cell types, resulting in complete loss of horizontal cells and reduced numbers of amacrine and bipolar cells, while the number of Muller glia is increased. Molecular analysis places Sip1 downstream of the eye field transcription factor Pax6 and upstream of Ptf1a in the gene network required for generating the horizontal and amacrine lineages. Intriguingly, characterization of differentiation dynamics reveals that Sip1 has a role in promoting the timely differentiation of retinal interneurons, assuring generation of the proper number of the diverse neuronal and glial cell subtypes that constitute the functional retina in mammals.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Retina/citología , Retina/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Inmunoprecipitación de Cromatina , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neurogénesis/fisiología , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Embarazo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Development ; 143(11): 1937-47, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27246713

RESUMEN

Ocular lens morphogenesis is a model for investigating mechanisms of cellular differentiation, spatial and temporal gene expression control, and chromatin regulation. Brg1 (Smarca4) and Snf2h (Smarca5) are catalytic subunits of distinct ATP-dependent chromatin remodeling complexes implicated in transcriptional regulation. Previous studies have shown that Brg1 regulates both lens fiber cell differentiation and organized degradation of their nuclei (denucleation). Here, we employed a conditional Snf2h(flox) mouse model to probe the cellular and molecular mechanisms of lens formation. Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells forming the lens vesicle, implicating Snf2h as a key regulator of lens vesicle polarity through spatial control of Prox1, Jag1, p27(Kip1) (Cdkn1b) and p57(Kip2) (Cdkn1c) gene expression. The abnormal Snf2h(-/-) fiber cells also retain their nuclei. RNA profiling of Snf2h(-/) (-) and Brg1(-/-) eyes revealed differences in multiple transcripts, including prominent downregulation of those encoding Hsf4 and DNase IIß, which are implicated in the denucleation process. In summary, our data suggest that Snf2h is essential for the establishment of lens vesicle polarity, partitioning of prospective lens epithelial and fiber cell compartments, lens fiber cell differentiation, and lens fiber cell nuclear degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Embrión de Mamíferos/metabolismo , Cristalino/citología , Cristalino/embriología , Animales , Autofagia , Compartimento Celular , Ciclo Celular , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción del Choque Térmico , Ratones Noqueados , Mitofagia , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX6/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética
10.
PLoS Genet ; 12(12): e1006486, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27997532

RESUMEN

Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Disautonomía Familiar/genética , Histona Desacetilasas/genética , Fosfatidilserinas/administración & dosificación , Tubulina (Proteína)/genética , Empalme Alternativo/genética , Animales , Transporte Axonal/genética , Axones/efectos de los fármacos , Modelos Animales de Enfermedad , Disautonomía Familiar/tratamiento farmacológico , Disautonomía Familiar/patología , Exones/genética , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/patología , Histona Desacetilasa 6 , Histona Desacetilasas/biosíntesis , Humanos , Ratones , Ratones Noqueados , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Factor de Crecimiento Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosfatidilserinas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
PLoS Genet ; 12(9): e1006274, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27611684

RESUMEN

Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Neurogénesis , Mucosa Olfatoria/metabolismo , Factores de Transcripción/genética , Animales , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Mucosa Olfatoria/citología , Mucosa Olfatoria/embriología , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Factores de Transcripción/metabolismo
12.
Dev Biol ; 432(1): 140-150, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993200

RESUMEN

In the developing retina, as in other regions of the CNS, neural progenitors give rise to individual cell types during discrete temporal windows. Pax6 is expressed in retinal progenitor cells (RPCs) throughout the course of retinogenesis, and has been shown to be required during early retinogenesis for generation of most early-born cell types. In this study, we examined the function of Pax6 in postnatal mouse retinal development. We found that Pax6 is essential for the generation of late-born interneurons, while inhibiting photoreceptor differentiation. Generation of bipolar interneurons requires Pax6 expression in RPCs, while Pax6 is required for the generation of glycinergic, but not for GABAergic or non-GABAergic-non-glycinergic (nGnG) amacrine cell subtypes. In contrast, overexpression of either full-length Pax6 or its 5a isoform in RPCs induces formation of cells with nGnG amacrine features, and suppresses generation of other inner retinal cell types. Moreover, overexpression of both Pax6 variants prevents photoreceptor differentiation, most likely by inhibiting Crx expression. Taken together, these data show that Pax6 acts in RPCs to control differentiation of multiple late-born neuronal cell types.


Asunto(s)
Neuronas/fisiología , Factor de Transcripción PAX6/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Retina/fisiología , Células Amacrinas/citología , Células Amacrinas/metabolismo , Células Amacrinas/fisiología , Animales , Diferenciación Celular/fisiología , Femenino , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6/metabolismo , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/citología , Retina/metabolismo , Neuronas Retinianas/citología , Neuronas Retinianas/metabolismo , Neuronas Retinianas/fisiología
13.
Development ; 142(14): 2487-98, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26062936

RESUMEN

Dysfunction of the retinal pigmented epithelium (RPE) results in degeneration of photoreceptors and vision loss and is correlated with common blinding disorders in humans. Although many protein-coding genes are known to be expressed in RPE and are important for its development and maintenance, virtually nothing is known about the in vivo roles of non-coding transcripts. The expression patterns of microRNAs (miRNAs) have been analyzed in a variety of ocular tissues, and a few were implicated to play role in RPE based on studies in cell lines. Here, through RPE-specific conditional mutagenesis of Dicer1 or Dgcr8 in mice, the importance of miRNAs for RPE differentiation was uncovered. miRNAs were found to be dispensable for maintaining RPE fate and survival, and yet they are essential for the acquisition of important RPE properties such as the expression of genes involved in the visual cycle pathway, pigmentation and cell adhesion. Importantly, miRNAs of the RPE are required for maturation of adjacent photoreceptors, specifically for the morphogenesis of the outer segments. The alterations in the miRNA and mRNA profiles in the Dicer1-deficient RPE point to a key role of miR-204 in regulation of the RPE differentiation program in vivo and uncover the importance of additional novel RPE miRNAs. This study reveals the combined regulatory activity of miRNAs that is required for RPE differentiation and for the development of the adjacent neuroretina.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Retina/embriología , Epitelio Pigmentado de la Retina/citología , Animales , Adhesión Celular , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , ARN Helicasas DEAD-box/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Ratones , Ratones Transgénicos , Mutagénesis , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Fotorreceptoras/metabolismo , Pigmentación , Retina/metabolismo , Rodopsina/metabolismo , Ribonucleasa III/metabolismo , Transcriptoma
14.
Development ; 142(5): 972-82, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25715397

RESUMEN

The Wnt/ß-catenin response pathway is central to many developmental processes. Here, we assessed the role of Wnt signaling in early eye development using the mouse as a model system. We showed that the surface ectoderm region that includes the lens placode expressed 12 out of 19 possible Wnt ligands. When these activities were suppressed by conditional deletion of wntless (Le-cre; Wls(fl/fl)) there were dramatic consequences that included a saucer-shaped optic cup, ventral coloboma, and a deficiency of periocular mesenchyme. This phenotype shared features with that produced when the Wnt/ß-catenin pathway co-receptor Lrp6 is mutated or when retinoic acid (RA) signaling in the eye is compromised. Consistent with this, microarray and cell fate marker analysis identified a series of expression changes in genes known to be regulated by RA or by the Wnt/ß-catenin pathway. Using pathway reporters, we showed that Wnt ligands from the surface ectoderm directly or indirectly elicit a Wnt/ß-catenin response in retinal pigment epithelium (RPE) progenitors near the optic cup rim. In Le-cre; Wls(fl/fl) mice, the numbers of RPE cells are reduced and this can explain, using the principle of the bimetallic strip, the curvature of the optic cup. These data thus establish a novel hypothesis to explain how differential cell numbers in a bilayered epithelium can lead to shape change.


Asunto(s)
Ectodermo/metabolismo , Ojo/embriología , Ojo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Desarrollo Embrionario , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Morfogénesis/genética , Morfogénesis/fisiología , Tretinoina/metabolismo
15.
Development ; 141(23): 4432-47, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25406393

RESUMEN

The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis.


Asunto(s)
Proteínas del Ojo/metabolismo , Redes Reguladoras de Genes/fisiología , Proteínas de Homeodominio/metabolismo , Cristalino/embriología , Modelos Biológicos , Organogénesis/fisiología , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Vertebrados/embriología , Animales , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Humanos , Placa Neural/embriología , Factor de Transcripción PAX6 , Especificidad de la Especie
16.
Nucleic Acids Res ; 43(14): 6827-46, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26138486

RESUMEN

The transcription factor Pax6 is comprised of the paired domain (PD) and homeodomain (HD). In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific subpopulations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification. Pax6 also regulates the entire lens developmental program. To reconstruct Pax6-dependent gene regulatory networks (GRNs), ChIP-seq studies were performed using forebrain and lens chromatin from mice. A total of 3514 (forebrain) and 3723 (lens) Pax6-containing peaks were identified, with ∼70% of them found in both tissues and thereafter called 'common' peaks. Analysis of Pax6-bound peaks identified motifs that closely resemble Pax6-PD, Pax6-PD/HD and Pax6-HD established binding sequences. Mapping of H3K4me1, H3K4me3, H3K27ac, H3K27me3 and RNA polymerase II revealed distinct types of tissue-specific enhancers bound by Pax6. Pax6 directly regulates cortical neurogenesis through activation (e.g. Dmrta1 and Ngn2) and repression (e.g. Ascl1, Fezf2, and Gsx2) of transcription factors. In lens, Pax6 directly regulates cell cycle exit via components of FGF (Fgfr2, Prox1 and Ccnd1) and Wnt (Dkk3, Wnt7a, Lrp6, Bcl9l, and Ccnd1) signaling pathways. Collectively, these studies provide genome-wide analysis of Pax6-dependent GRNs in lens and forebrain and establish novel roles of Pax6 in organogenesis.


Asunto(s)
Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Homeodominio/metabolismo , Cristalino/metabolismo , Neurogénesis/genética , Factores de Transcripción Paired Box/metabolismo , Prosencéfalo/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Cromatina/metabolismo , ADN/química , ADN/metabolismo , Elementos de Facilitación Genéticos , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Cristalino/embriología , Cristalino/crecimiento & desarrollo , Ratones , Ratones Noqueados , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Prosencéfalo/embriología , Unión Proteica , Proteínas Represoras/genética , Transcripción Genética
17.
PLoS Genet ; 10(5): e1004360, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875170

RESUMEN

During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE). Somatic mutagenesis of Pax6 in the differentiating RPE revealed that PAX6 functions in a feed-forward regulatory loop with MITF during onset of melanogenesis. PAX6 both controls the expression of an RPE isoform of Mitf and synergizes with MITF to activate expression of genes involved in pigment biogenesis. This study exemplifies how one kernel gene pivotal in organ formation accomplishes a lineage-specific role during terminal differentiation of a single lineage.


Asunto(s)
Diferenciación Celular/genética , Proteínas del Ojo/biosíntesis , Proteínas de Homeodominio/biosíntesis , Factor de Transcripción Asociado a Microftalmía/genética , Organogénesis/genética , Factores de Transcripción Paired Box/biosíntesis , Proteínas Represoras/biosíntesis , Animales , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Factor de Transcripción Asociado a Microftalmía/biosíntesis , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Pigmentación/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/metabolismo
18.
PLoS Genet ; 9(3): e1003357, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516376

RESUMEN

During development, tissue-specific transcription factors regulate both protein-coding and non-coding genes to control differentiation. Recent studies have established a dual role for the transcription factor Pax6 as both an activator and repressor of gene expression in the eye, central nervous system, and pancreas. However, the molecular mechanism underlying the inhibitory activity of Pax6 is not fully understood. Here, we reveal that Trpm3 and the intronic microRNA gene miR-204 are co-regulated by Pax6 during eye development. miR-204 is probably the best known microRNA to function as a negative modulator of gene expression during eye development in vertebrates. Analysis of genes altered in mouse Pax6 mutants during lens development revealed significant over-representation of miR-204 targets among the genes up-regulated in the Pax6 mutant lens. A number of new targets of miR-204 were revealed, among them Sox11, a member of the SoxC family of pro-neuronal transcription factors, and an important regulator of eye development. Expression of Trpm/miR-204 and a few of its targets are also Pax6-dependent in medaka fish eyes. Collectively, this study identifies a novel evolutionarily conserved mechanism by which Pax6 controls the down-regulation of multiple genes through direct up-regulation of miR-204.


Asunto(s)
Evolución Molecular , Proteínas del Ojo , Ojo , Proteínas de Homeodominio , MicroARNs , Factores de Transcripción Paired Box , Proteínas Represoras , Animales , Sitios de Unión , Diferenciación Celular/genética , Cristalinas/genética , Cristalinas/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXC/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Vertebrados/genética , Vertebrados/metabolismo
19.
Hum Mol Genet ; 22(14): 2785-94, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23515154

RESUMEN

Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.


Asunto(s)
Proteínas Portadoras/genética , Disautonomía Familiar/metabolismo , Fosfatidilserinas/metabolismo , Empalme Alternativo , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Disautonomía Familiar/genética , Exones , Femenino , Técnicas de Sustitución del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular , Intrones , Masculino , Ratones , Ratones Transgénicos , Factores de Elongación Transcripcional
20.
Am J Pathol ; 184(11): 2936-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25196308

RESUMEN

Protein phosphatase magnesium dependent 1A (PPM1A) has been implicated in fibrosis and skin wounding. We generated PPM1A knockout mice to study the role of PPM1A in the wound healing-inflammation-angiogenesis cross talk. The role of PPM1A in these processes was studied using the ocular alkali burn model system. In the injured cornea the absence of PPM1A led to enhanced inflammatory response, stromal keratocyte transactivation, fibrosis, increased p38 mitogen-activated protein kinase phosphorylation, elevated expression of transforming growth factor-ß-related genes (including Acta2, TGF-ß, Col1, MMP9, and VEGF) and subsequently to neovascularization. Augmented angiogenesis in the absence of PPM1A is a general process occurring in vivo in PPM1A knockout mice upon subcutaneous Matrigel injection and ex vivo in aortic ring Matrigel cultures. Using primary keratocyte cultures and various experimental approaches, we found that phospho-p38 is a favored PPM1A substrate and that by its dephosphorylation PPM1A participates in the regulation of the transforming growth factor-ß signaling cascade, the hallmark of inflammation and the angiogenic process. On the whole, the studies presented here position PPM1A as a new player in the wound healing-inflammation-angiogenesis axis in mouse, reveal its crucial role in homeostasis on injury, and highlight its potential as a therapeutic mediator in pathologic conditions, such as inflammation and angiogenesis disorders, including cancer.


Asunto(s)
Quemaduras Químicas/patología , Inflamación/genética , Neovascularización Patológica/genética , Fosfoproteínas Fosfatasas/genética , Cicatrización de Heridas/genética , Animales , Quemaduras Químicas/genética , Quemaduras Químicas/metabolismo , Córnea/metabolismo , Córnea/patología , Inflamación/metabolismo , Ratones , Ratones Noqueados , Neovascularización Patológica/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 2C , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA