Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Physiol ; 192(2): 837-856, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36682886

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in regulating various developmental and biological processes. The expression of miRNAs is differentially modulated in response to various biotic and abiotic stresses. Recent findings have shown that some pri-miRNAs encode small regulatory peptides known as microRNA-encoded peptides (miPEPs). miPEPs regulate the growth and development of plants by modulating corresponding miRNA expression; however, the role of these peptides under different stress conditions remains unexplored. Here, we report that pri-miR408 encodes a small peptide, miPEP408, that regulates the expression of miR408, its targets, and associated phenotype in Arabidopsis. We also report that miR408, apart from Plantacyanin (ARPN) and Laccase3 (LAC3), targets a glutathione S-transferase (GSTU25) that plays a role in sulfur assimilation and exhibits a range of detoxification activities with the environmental pollutant. Plants overexpressing miR408 showed severe sensitivity under low sulfur (LS), arsenite As(III), and LS + As(III) stress, while miR408 mutants developed using the CRISPR/Cas9 approach showed tolerance. Transgenic lines showed phenotypic alteration and modulation in the expression of genes involved in the sulfur reduction pathway and affect sulfate and glutathione accumulation. Similar to miR408 overexpressing lines, the exogenous application of synthetic miPEP408 and miPEP408OX lines led to sensitivity in plants under LS, As(III), and combined LS + As(III) stress compared to the control. This study suggests the involvement of miR408 and miPEP408 in heavy metal and nutrient deficiency responses through modulation of the sulfur assimilation pathway.


Asunto(s)
Arabidopsis , Arsénico , Fenómenos Biológicos , MicroARNs , Arabidopsis/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Estrés Fisiológico/genética , Glutatión/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Azufre/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Funct Integr Genomics ; 22(4): 625-642, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35426545

RESUMEN

To understand drought tolerance mechanism(s) in clusterbean (Cyamopsis tetragonoloba), we conducted physiological, biochemical, and de novo comparative transcriptome analysis of drought-tolerant (RGC-1002) and drought-sensitive (RGC-1066) genotypes subjected to 30 days of drought stress. Relative water content (RWC) was maintained in tolerant genotype but was reduced in sensitive genotype. Leaf pigment concentrations were higher in tolerant genotype. Net photosynthesis was significantly decreased in sensitive genotype but insignificant reduction was found in tolerant genotype. Enzymatic antioxidant (GR, APX, DHAR) activities were enhanced in tolerant genotype, while there were insignificant changes in these enzymes in sensitive genotype. The ratios of antioxidant molecules (ASC/DHA and GSH/GSSG) were higher in tolerant genotype as compared to sensitive genotype. In sensitive genotype, 6625 differentially expressed genes (DEGs) were upregulated and 5365 genes were downregulated. In tolerant genotype, 5206 genes were upregulated and 2793 genes were downregulated. In tolerant genotype, transketolase family protein, phosphoenolpyruvate carboxylase 3, temperature-induced lipocalin, and cytochrome oxidase were highly upregulated. Moreover, according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the drought tolerance may be attributed to upregulated starch and sucrose metabolism-related genes in tolerant genotype. Finally, quantitative real-time PCR confirmed the reproducibility of the RNA-seq data.


Asunto(s)
Cyamopsis , Sequías , Antioxidantes/metabolismo , Cyamopsis/genética , Cyamopsis/metabolismo , Mecanismos de Defensa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Transcriptoma
3.
Physiol Mol Biol Plants ; 27(6): 1173-1189, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34177143

RESUMEN

Tomato is an economically important vegetable crop and a model for development and stress response studies. Although studied extensively for understanding fruit ripening and pathogen responses, its role as a model for root development remains less explored. In this study, an Illumina-based comparative differential transcriptomic analysis of tomato root with different aerial tissues was carried out to identify genes that are predominantly expressed during root growth. Sequential comparisons revealed ~ 15,000 commonly expressed genes and ~ 3000 genes of several classes that were mainly expressed or regulated in roots. These included 1069 transcription factors (TFs) of which 100 were differentially regulated. Prominent amongst these were members of families encoding Zn finger, MYB, ARM, bHLH, AP2/ERF, WRKY and NAC proteins. A large number of kinases, phosphatases and F-box proteins were also expressed in the root transcriptome. The major hormones regulating root growth were represented by the auxin, ethylene, JA, ABA and GA pathways with root-specific expression of certain components. Genes encoding carbon metabolism and photosynthetic components showed reduced expression while several protease inhibitors were amongst the most highly expressed. Overall, the study sheds light on genes governing root growth in tomato and provides a resource for manipulation of root growth for plant improvement. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01015-0.

4.
RNA Biol ; 15(12): 1433-1439, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30474479

RESUMEN

Cross-kingdom gene regulation by microRNAs (miRNAs) initiated a hot debate on the effective role of orally acquired plant miRNAs on human gene expression. It resulted in the expansion of gene regulation theories and role of plant miRNAs in cross-kingdom regulation of gene expression. This opened up the discussion that 'Whether we really get what we eat?' and 'Whether the orally acquired miRNAs really have a biologically important consequences after entering our digestive and circulatory system?' The reports of orally acquired plant miRNAs inside human alimentary canal have been a topic of discussion in the scientific community. The cross-kingdom gene regulations have raised our hopes to explore the exciting world of plant miRNAs as therapeutic potential and dietary supplements. However, there are reports which have raised concerns over any such cross-kingdom regulation and argued that technical flaws in the experiments might have led to such hypothesis. This review will give the complete understanding of exogenous application and cross-kingdom regulation of plant miRNAs on human health. Here, we provide update and discuss the consequences of plant miRNA mediated cross-kingdom gene regulation and possibilities for this exciting regulatory mechanism as an augmented therapy against various diseases.


Asunto(s)
Dietoterapia , MicroARNs/administración & dosificación , Plantas Comestibles/genética , ARN de Planta/administración & dosificación , Animales , Dietoterapia/métodos , Suplementos Dietéticos , Regulación de la Expresión Génica , Humanos , Mamíferos/genética , Interferencia de ARN , ARN Viral , Especificidad de la Especie
5.
BMC Bioinformatics ; 16: 120, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25888493

RESUMEN

BACKGROUND: Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera. RESULTS: Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol. CONCLUSION: This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking.


Asunto(s)
Glicosiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , Esteroles/metabolismo , Withania/metabolismo , Witanólidos/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Glicosiltransferasas/química , Glicosiltransferasas/clasificación , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Withania/crecimiento & desarrollo
6.
Funct Integr Genomics ; 14(1): 161-75, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24275941

RESUMEN

Mitogen-activated protein kinases (MAPKs) are important components of the tripartite mitogen-activated protein kinase signaling cascade and play an important role in plant growth and development. Although members of the MAPK gene family have been identified in model plants, little information is available regarding this gene family in fruit crops. In this study, we carried out a computational analysis using the Musa Genome database to identify members of the MAPK gene family in banana, an economically important crop and the most popular fruit worldwide. Our analysis identified 25 members of the MAP kinase (MAPK or MPK) gene family. Phylogenetic analyses of MPKs in Arabidopsis, Oryza, and Populus have classified these MPKs into four subgroups. The presence of conserved domains in the deduced amino acid sequences, phylogeny, and genomic organization strongly support their identity as members of the MPK gene family. Expression analysis during ethylene-induced banana fruit ripening suggests the involvement of several MPKs in the ethylene signal transduction pathway that are necessary for banana fruit ripening. Analysis of the cis-regulatory elements in the promoter regions and the involvement of the identified MPKs in various cellular processes, as analyzed using Pathway Studio, suggest a role for the banana MPK gene family in diverse functions related to growth, development, and the stress response. This report is the first concerning the identification of members of a gene family and the elucidation of their role in various processes using the Musa Genome database.


Asunto(s)
Frutas/enzimología , Proteínas Quinasas Activadas por Mitógenos/genética , Musa/enzimología , Secuencia de Aminoácidos , Mapeo Cromosómico , Etilenos/metabolismo , Etilenos/farmacología , Frutas/efectos de los fármacos , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Redes y Vías Metabólicas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Musa/efectos de los fármacos , Musa/microbiología , Musa/fisiología , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Transducción de Señal/genética
7.
BMC Plant Biol ; 14: 316, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25442405

RESUMEN

BACKGROUND: Banana is one of the most important crop plants grown in the tropics and sub-tropics. It is a climacteric fruit and undergoes ethylene dependent ripening. Once ripening is initiated, it proceeds at a fast rate making postharvest life short, which can result in heavy economic losses. During the fruit ripening process a number of physiological and biochemical changes take place and thousands of genes from various metabolic pathways are recruited to produce a ripe and edible fruit. To better understand the underlying mechanism of ripening, we undertook a study to evaluate global changes in the transcriptome of the fruit during the ripening process. RESULTS: We sequenced the transcriptomes of the unripe and ripe stages of banana (Musa accuminata; Dwarf Cavendish) fruit. The transcriptomes were sequenced using a 454 GSFLX-Titanium platform that resulted in more than 7,00,000 high quality (HQ) reads. The assembly of the reads resulted in 19,410 contigs and 92,823 singletons. A large number of the differentially expressed genes identified were linked to ripening dependent processes including ethylene biosynthesis, perception and signalling, cell wall degradation and production of aromatic volatiles. In the banana fruit transcriptomes, we found transcripts included in 120 pathways described in the KEGG database for rice. The members of the expansin and xyloglucan transglycosylase/hydrolase (XTH) gene families were highly up-regulated during ripening, which suggests that they might play important roles in the softening of the fruit. Several genes involved in the synthesis of aromatic volatiles and members of transcription factor families previously reported to be involved in ripening were also identified. CONCLUSIONS: A large number of differentially regulated genes were identified during banana fruit ripening. Many of these are associated with cell wall degradation and synthesis of aromatic volatiles. A large number of differentially expressed genes did not align with any of the databases and might be novel genes in banana. These genes can be good candidates for future studies to establish their role in banana fruit ripening. The datasets developed in this study will help in developing strategies to manipulate banana fruit ripening and reduce post harvest losses.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Musa/genética , Musa/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Hazard Mater ; 469: 133954, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484657

RESUMEN

Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.


Asunto(s)
Arsénico , Debaryomyces , Oryza , Debaryomyces/genética , Debaryomyces/metabolismo , Oryza/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Saccharomyces cerevisiae/genética , Perfilación de la Expresión Génica , Glutatión/metabolismo
9.
Sci Rep ; 13(1): 4918, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966146

RESUMEN

Phosphate starvation is one of the major factors limiting plant productivity globally. Soil microflora with an inherent trait of phosphate accumulation directly influences soil phosphorus level by regulating its labile form in soil solution. However, the detailed mechanism involved during their interaction with plants under phosphate deficient conditions is still unexplored. Hence, to dissect these complex gene regulatory networks, transcriptome analysis of A. thaliana roots grown under phosphate starved conditions in presence of phosphate accumulating bacteria (Pseudomonas putida; RAR) was performed. Plants grown under phosphate starved conditions showed upregulation of phosphate starvation responsive genes associated with cell biogenesis, stress, photosynthesis, senescence, and cellular transport. Inoculation of RAR upregulated genes linked to defense, cell wall remodeling, and hormone metabolism in stressed plants. Gene ontology analysis indicated the induction of S-glycoside, glucosinolate, and glycosinolate metabolic processes in RAR inoculated plants under phosphate stressed conditions. Further, protein-protein interaction analysis revealed upregulation of root development, cation transport, anion transport, sulfur compound metabolic process, secondary metabolic process, cellular amino metabolic process, and response to salicylic acid in RAR inoculated plants under phosphate starved conditions. These results indicate the potential role of phosphate accumulating bacteria in alleviating phosphate starvation in plants by involving multiple pathways.


Asunto(s)
Arabidopsis , Pseudomonas putida , Arabidopsis/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Suelo , Regulación de la Expresión Génica de las Plantas
10.
Theor Appl Genet ; 124(3): 565-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22038488

RESUMEN

Four microsatellite-enriched genomic libraries for CA(15), GA(15), AAG(8) and ATG(8) repeats and transcriptome sequences of five cDNA libraries of Gossypium herbaceum were explored to develop simple sequence repeat (SSR) markers. A total of 428 unique clones from repeat enriched genomic libraries were mined for 584 genomic SSRs (gSSRs). In addition, 99,780 unigenes from transcriptome sequencing were explored for 8,900 SSR containing sequences with 12,471 expressed SSRs. The present study adds 1,970 expressed SSRs and 263 gSSRs to the public domain for the use of genetic studies of cotton. When 150 gSSRs and 50 expressed SSRs were tested on a panel of four species of cotton, 68 gSSRs and 12 expressed SSRs revealed polymorphism. These 200 SSRs were further deployed on 15 genotypes of levant cotton for the genetic diversity assessment. This is the first report on the successful use of repeat enriched genomic library and expressed sequence database for microsatellite markers development in G. herbaceum.


Asunto(s)
Gossypium/genética , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional , Minería de Datos , Biblioteca de Genes , Genómica/métodos , Datos de Secuencia Molecular , Fenotipo , Análisis de Secuencia de ADN
11.
Microbiol Spectr ; 10(1): e0034521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196785

RESUMEN

Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Polifosfatos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Microbiología del Suelo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Variación Genética , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Filogenia , Pseudomonas/clasificación , Pseudomonas/enzimología , Rizosfera , Sideróforos/biosíntesis , Suelo/química
12.
Funct Integr Genomics ; 11(2): 259-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21221698

RESUMEN

Sulphur, an essential nutrient required for plant growth and development, is mainly taken up by the plants as inorganic sulphate from the soil and assimilated into the sulphur reductive pathway. The uptake and transport of sulphate in plants is carried out by transporters encoded by the sulphate transporter gene family. Plant sulphate transporters have been classified with respect to their protein sequences, kinetic properties and tissue-specific localization in Arabidopsis. Though sulphate transporter genes from few other plants have also been characterized, no detailed study with respect to the structure and expression of this family from rice has been carried out. Here, we present genome-wide identification, structural and expression analyses of the rice sulphate transporter gene family. Our analysis using microarray data and MPSS database suggests that 14 rice sulphate transporters are differentially expressed during growth and development in various tissues and during biotic and abiotic stresses. Our analysis also suggests differential accumulation of splice variants of OsSultr1;1 and OsSultr4;1 transcripts during these processes. Apart from known spliced variants, we report an unusual alternative splicing of OsSultr1;1 transcript related to sulphur supply in growth medium and during stress response. Taken together, our study suggests that differential expression and alternative splicing of members of the sulphate transporter family plays an important role in regulating cellular sulphur status required for growth and development and during stress conditions. These findings significantly advance our understanding of the posttranscriptional regulatory mechanisms operating to regulate sulphur demand by the plant.


Asunto(s)
Empalme Alternativo , Proteínas de Transporte de Anión/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Azufre/metabolismo , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Familia de Multigenes , Oryza/crecimiento & desarrollo , Filogenia , Estrés Fisiológico/genética
13.
Plant Physiol ; 152(4): 2258-68, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20190095

RESUMEN

Flavonoids synthesized by the phenylpropanoid pathway participate in myriad physiological and biochemical processes in plants. Due to the diversity of secondary transformations and the complexity of the regulation of branched pathways, single gene strategies have not been very successful in enhancing the accumulation of targeted molecules. We have expressed an Arabidopsis (Arabidopsis thaliana) transcription factor, AtMYB12, in tobacco (Nicotiana tabacum), which resulted in enhanced expression of genes involved in the phenylpropanoid pathway, leading to severalfold higher accumulation of flavonols. Global gene expression and limited metabolite profiling of leaves in the transgenic lines of tobacco revealed that AtMYB12 regulated a number of pathways, leading to flux availability for the phenylpropanoid pathway in general and flavonol biosynthesis in particular. The tobacco transgenic lines developed resistance against the insect pests Spodoptera litura and Helicoverpa armigera due to enhanced accumulation of rutin. Suppression of flavonol biosynthesis by artificial microRNA reversed insect resistance of the AtMYB12-expressing tobacco plants. Our study suggests that AtMYB12 can be strategically used for developing safer insect pest-resistant transgenic plants.


Asunto(s)
Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Metaboloma , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo
14.
Funct Integr Genomics ; 9(4): 525-35, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19277739

RESUMEN

Proline hydroxylation is an important phenomenon of a living cell. Prolyl-4-hydroxylases (P4H) responsible for this process have been characterized from animals, and one of its forms, HIF-P4H, is regarded as an oxygen sensor. In plants, P4H has been partially characterized from few species, and one of the Arabidopsis P4H (AtP4H1) has been shown to hydroxylate proline-rich peptides in vitro. In order to study its function in planta, we have overexpressed AtP4H1 in Arabidopsis. The AtP4H1oexp plants showed hypoxia-in-normoxia phenotype with strict requirement for carbon source for its growth, increased root hair, absence of trichome, and reduction in seed size. Genome-wide expression analyses suggest that expression of several genes related to hypoxia as well as plant growth and development are upregulated in AtP4H1oexp lines. Based on our studies on AtP4H1oexp lines, we speculate a direct role of AtP4H1 in hypoxia stress and in different stages of plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hipoxia/metabolismo , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Arabidopsis/anatomía & histología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Hidroxiprolina/metabolismo , Análisis por Micromatrices , Procolágeno-Prolina Dioxigenasa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
J Hazard Mater ; 362: 383-393, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30245406

RESUMEN

ClassIII peroxidases are multigene family of plant-specific peroxidase enzyme. They are involved in various physiological and developmental processes like auxin catabolism, cell metabolism, various biotic, abiotic stresses and cell elongation. In the present study, we identified a class III peroxidase (OsPRX38) from rice which is upregulated several folds in both arsenate (AsV) and arsenite (AsIII) stresses. The overexpression of OsPRX38 in Arabidopsis thaliana significantly enhances Arsenic (As) tolerance by increasing SOD, PRX GST activity and exhibited low H2O2, electrolyte leakage and malondialdehyde content. OsPRX38 overexpression also affect the plant growth by increasing total biomass and seeds production in transgenics than WT under As stress condition. Confocal microscopy revealed that the OsPRX38-YFP fusion protein was localized to the apoplast of the onion epidermal cells. In addition, lignification was positively correlated with an increase in cell-wall-associated peroxidase activities in transgenic plants. This study indicates the role of OsPRX38 in lignin biosynthesis, where lignin act as an apoplastic barrier for As entry in root cells leading to reduction of As accumulation in transgenic. Overall the study suggests that overexpression of OsPRX38 in Arabidopsis thaliana activates the signaling network of different antioxidant systems under As stress condition, enhancing the plant tolerance by reducing As accumulation due to high lignification.


Asunto(s)
Arabidopsis/metabolismo , Arsénico/metabolismo , Lignina/química , Oryza/enzimología , Peroxidasas/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Glucanos/química , Peróxido de Hidrógeno/química , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Salicilamidas/química , Estrés Fisiológico , Regulación hacia Arriba
16.
Prog Lipid Res ; 69: 1-10, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29170003

RESUMEN

Steroidal alkaloids (SAs) are widely synthesized and distributed in plants manifesting as natural produce endowed with potential for medicinal, pesticidal and other high-value usages. Glycosylation of these SAs raises complex and diverse glycosides in plant cells that indeed govern numerous functional aspects. During the glycosylation process of these valuable metabolites, the addition of carbohydrate molecule(s) is catalyzed by enzymes known as sterol glycosyltransferases (SGTs), commonly referred to as UGTs, leading to the production of steryl glycosides (SGs). The ratio of SGs and nonglyco-conjugated SAs are different in different plant species, however, their biosynthesis in the cell is controlled by different environmental factors. The aim of this review is to evaluate the current SGT enzyme research and the functional consequences of glycomodification of SAs on the physiology and plant development, which together are associated with the plant's primary processes. Pharmaceutical, industrial, and other potential uses of saponins have also been discussed and their use in therapeutics has been unveiled by in silico analysis. The field of biotransformation or conversion of nonglycosylated to glycosylated phytosterols by the activity of SGTs, making them soluble, available and more useful for humankind is the new field of interest towards drug therapy.


Asunto(s)
Glicosiltransferasas/metabolismo , Esteroles/metabolismo , Alcaloides/metabolismo , Secuencia de Aminoácidos , Evolución Molecular , Glicosiltransferasas/biosíntesis , Glicosiltransferasas/química , Humanos , Desarrollo de la Planta
17.
J Hazard Mater ; 351: 1-10, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506000

RESUMEN

Arsenic (As) is a ubiquitous metalloid and a health hazard to millions of people worldwide. The presence of As in groundwater poses a threat as it not only affects crop productivity but also contaminates food chain. Therefore, it is essential to understand molecular mechanisms underlying uptake, transport and accumulation of As in plants. In recent past, natural variation in Arabidopsis thaliana has been utilized to understand molecular and genetic adaptation under different stresses. In this study, responses of Arabidopsis accessions were analyzed at biochemical and molecular levels towards arsenate [As(V)] stress. On the basis of reduction in root length, accessions were categorized into tolerant and sensitive ones towards As(V). Root length analysis led to the identification of Col-0 (<10% reduction) and Slavi-1 (>60% reduction) as the most tolerant and sensitive accessions, respectively. Comparative genome-wide expression analysis revealed differential expression of 168 and 548 genes in Col-0 and Slavi-1, respectively, with 120 common differentially expressed genes. A number of genes associated with defense and stress-response, transport system, regulatory mechanisms and biochemical processes showed differential expression in contrasting accessions. The study provides an insight into the molecular mechanisms associated with stress response and processes involved in adaptation strategies towards As stress.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arseniatos/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Componentes Aéreos de las Plantas/efectos de los fármacos , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Componentes Aéreos de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma/efectos de los fármacos
18.
Sci Rep ; 8(1): 7573, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29765069

RESUMEN

The cotton mealybug Phenacoccus solenopsis is a devastating pest of cotton causing tremendous loss in the yield of crops each year. Widespread physiological and biological studies on P. solenopsis have been carried out, but the lack of genetic information has constrained our understanding of the molecular mechanisms behind its growth and development. To understand and characterize the different developmental stages, RNA-Seq platform was used to execute de-novo transcriptome assembly and differential gene expression profiling for the eggs, first, second, third instar and adult female stages. About 182.67 million reads were assembled into 93,781 unigenes with an average length of 871.4 bp and an N50 length of 1899 bp. These unigenes sequences were annotated and classified by performing NCBI non-redundant (Nr) database, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG), Gene ontology (GO), the Swiss-Prot protein database (Swiss-Prot), and nearest related organism Acyrthosiphon pisum (pea aphid) database. To get more information regarding the process of metamorphosis, we performed a pairwise comparison of four developmental stages and obtained 29,415 differentially expressed genes. Some of the differentially expressed genes were associated with functional protein synthesis, anti-microbial protection, development and hormone biosynthesis. Functional pathway enrichment analysis of differentially expressed genes showed the positive correlation with specific physiological activities of each stage, and these results were confirmed by qRT-PCR experiments. This study gives a valuable genomics resource of P. solenopsis covering all its developmental stages and will promote future studies on biological processes at the molecular level.


Asunto(s)
Perfilación de la Expresión Génica/veterinaria , Hemípteros/crecimiento & desarrollo , Hormonas de Insectos/biosíntesis , Proteínas de Insectos/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Hemípteros/genética , Hemípteros/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Análisis de Secuencia de ARN/veterinaria
19.
Sci Rep ; 7: 44733, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28322296

RESUMEN

Condensed tannin (CT) or proanthocyanidin (PA) is a unique group of phenolic metabolite with high molecular weight with specific structure. It is reported that, the presence of high-CT in the legumes adversely affect the nutrients in the plant and impairs the digestibility upon consumption by animals. Winged bean (Psophocarpus tetragonolobus (L.) DC.) is one of the promising underutilized legume with high protein and oil-content. One of the reasons for its underutilization is due to the presence of CT. Transcriptome sequencing of leaves of two diverse CT-containing lines of P. tetragonolobus was carried out on Illumina Nextseq 500 sequencer to identify the underlying genes and contigs responsible for CT-biosynthesis. RNA-Seq data generated 102586 and 88433 contigs for high (HCTW) and low CT (LCTW) lines of P. tetragonolobus, respectively. Based on the similarity searches against gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database revealed 5210 contigs involved in 229 different pathways. A total of 1235 contigs were detected to differentially express between HCTW and LCTW lines. This study along with its findings will be helpful in providing information for functional and comparative genomic analysis of condensed tannin biosynthesis in this plant in specific and legumes in general.


Asunto(s)
Fabaceae/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hojas de la Planta/genética , Proantocianidinas/metabolismo , Transcriptoma/genética , Vías Biosintéticas/genética , Cromatografía Líquida de Alta Presión , Mapeo Contig , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Proantocianidinas/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo
20.
Sci Rep ; 7: 44729, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300183

RESUMEN

Chickpea (C. arietinum L.) is an important pulse crop in Asian and African countries that suffers significant yield losses due to attacks by insects like H. armigera. To obtain insights into early responses of chickpea to insect attack, a transcriptomic analysis of chickpea leaves just 20 minutes after simulated herbivory was performed, using oral secretions of H. armigera coupled with mechanical wounding. Expression profiles revealed differential regulation of 8.4% of the total leaf transcriptome with 1334 genes up-regulated and 501 down-regulated upon wounding at log2-fold change (|FC| ≤ -1 and ≥1) and FDR value ≤ 0.05. In silico analysis showed the activation of defenses through up-regulation of genes of the phenylpropanoid pathway, pathogenesis, oxidases and CYTP450 besides differential regulation of kinases, phosphatases and transcription factors of the WRKY, MYB, ERFs, bZIP families. A substantial change in the regulation of hormonal networks was observed with up-regulation of JA and ethylene pathways and suppression of growth associated hormone pathways like GA and auxin within 20 minutes of wounding. Secondary qPCR comparison of selected genes showed that oral secretions often increased differential expression relative to mechanical damage alone. The studies provide new insights into early wound responses in chickpea.


Asunto(s)
Cicer/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Redes Reguladoras de Genes/genética , Giberelinas/metabolismo , Herbivoria/fisiología , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Animales , Cicer/inmunología , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mariposas Nocturnas/fisiología , Hojas de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Saliva/metabolismo , Análisis de Secuencia de ARN , Transcriptoma/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA