Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 603(7900): 280-283, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264762

RESUMEN

Ancient history relies on disciplines such as epigraphy-the study of inscribed texts known as inscriptions-for evidence of the thought, language, society and history of past civilizations1. However, over the centuries, many inscriptions have been damaged to the point of illegibility, transported far from their original location and their date of writing is steeped in uncertainty. Here we present Ithaca, a deep neural network for the textual restoration, geographical attribution and chronological attribution of ancient Greek inscriptions. Ithaca is designed to assist and expand the historian's workflow. The architecture of Ithaca focuses on collaboration, decision support and interpretability. While Ithaca alone achieves 62% accuracy when restoring damaged texts, the use of Ithaca by historians improved their accuracy from 25% to 72%, confirming the synergistic effect of this research tool. Ithaca can attribute inscriptions to their original location with an accuracy of 71% and can date them to less than 30 years of their ground-truth ranges, redating key texts of Classical Athens and contributing to topical debates in ancient history. This research shows how models such as Ithaca can unlock the cooperative potential between artificial intelligence and historians, transformationally impacting the way that we study and write about one of the most important periods in human history.


Asunto(s)
Arqueología/métodos , Aprendizaje Profundo , Escritura/historia , Antigua Grecia/etnología , Escritura Manual , Historia Antigua , Humanos , Programas Informáticos
2.
Nat Methods ; 18(10): 1196-1203, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34608324

RESUMEN

How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer-promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis-regulatory evolution.


Asunto(s)
ADN/genética , Bases de Datos Genéticas , Epigénesis Genética , Regulación de la Expresión Génica , Aprendizaje Automático , Red Nerviosa , Animales , Línea Celular , Genoma , Genómica/métodos , Humanos , Ratones , Sitios de Carácter Cuantitativo
3.
Plast Reconstr Surg Glob Open ; 9(6): e3638, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34235035

RESUMEN

INTRODUCTION: Machine learning (ML) is a set of models and methods that can detect patterns in vast amounts of data and use this information to perform various kinds of decision-making under uncertain conditions. This review explores the current role of this technology in plastic surgery by outlining the applications in clinical practice, diagnostic and prognostic accuracies, and proposed future direction for clinical applications and research. METHODS: EMBASE, MEDLINE, CENTRAL and ClinicalTrials.gov were searched from 1990 to 2020. Any clinical studies (including case reports) which present the diagnostic and prognostic accuracies of machine learning models in the clinical setting of plastic surgery were included. Data collected were clinical indication, model utilised, reported accuracies, and comparison with clinical evaluation. RESULTS: The database identified 1181 articles, of which 51 articles were included in this review. The clinical utility of these algorithms was to assist clinicians in diagnosis prediction (n=22), outcome prediction (n=21) and pre-operative planning (n=8). The mean accuracy is 88.80%, 86.11% and 80.28% respectively. The most commonly used models were neural networks (n=31), support vector machines (n=13), decision trees/random forests (n=10) and logistic regression (n=9). CONCLUSIONS: ML has demonstrated high accuracies in diagnosis and prognostication of burn patients, congenital or acquired facial deformities, and in cosmetic surgery. There are no studies comparing ML to clinician's performance. Future research can be enhanced using larger datasets or utilising data augmentation, employing novel deep learning models, and applying these to other subspecialties of plastic surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA