Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443185

RESUMEN

Type II tail-anchored (TA) membrane proteins are involved in diverse cellular processes, including protein translocation, vesicle trafficking, and apoptosis. They are characterized by a single C-terminal transmembrane domain that mediates posttranslational targeting and insertion into the endoplasmic reticulum (ER) via the Guided-Entry of TA proteins (GET) pathway. The GET system was originally described in mammals and yeast but was recently shown to be partially conserved in other eukaryotes, such as higher plants. A newly synthesized TA protein is shielded from the cytosol by a pretargeting complex and an ATPase that delivers the protein to the ER, where membrane receptors (Get1/WRB and Get2/CAML) facilitate insertion. In the model plant Arabidopsis thaliana, most components of the pathway were identified through in silico sequence comparison, however, a functional homolog of the coreceptor Get2/CAML remained elusive. We performed immunoprecipitation-mass spectrometry analysis to detect in vivo interactors of AtGET1 and identified a membrane protein of unknown function with low sequence homology but high structural homology to both yeast Get2 and mammalian CAML. The protein localizes to the ER membrane, coexpresses with AtGET1, and binds to Arabidopsis GET pathway components. While loss-of-function lines phenocopy the stunted root hair phenotype of other Atget lines, its heterologous expression together with the coreceptor AtGET1 rescues growth defects of Δget1get2 yeast. Ectopic expression of the cytosolic, positively charged N terminus is sufficient to block TA protein insertion in vitro. Our results collectively confirm that we have identified a plant-specific GET2 in Arabidopsis, and its sequence allows the analysis of cross-kingdom pathway conservation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Fenotipo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(8): E1544-E1553, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28096354

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are key players in cellular trafficking and coordinate vital cellular processes, such as cytokinesis, pathogen defense, and ion transport regulation. With few exceptions, SNAREs are tail-anchored (TA) proteins, bearing a C-terminal hydrophobic domain that is essential for their membrane integration. Recently, the Guided Entry of Tail-anchored proteins (GET) pathway was described in mammalian and yeast cells that serve as a blueprint of TA protein insertion [Schuldiner M, et al. (2008) Cell 134(4):634-645; Stefanovic S, Hegde RS (2007) Cell 128(6):1147-1159]. This pathway consists of six proteins, with the cytosolic ATPase GET3 chaperoning the newly synthesized TA protein posttranslationally from the ribosome to the endoplasmic reticulum (ER) membrane. Structural and biochemical insights confirmed the potential of pathway components to facilitate membrane insertion, but the physiological significance in multicellular organisms remains to be resolved. Our phylogenetic analysis of 37 GET3 orthologs from 18 different species revealed the presence of two different GET3 clades. We identified and analyzed GET pathway components in Arabidopsis thaliana and found reduced root hair elongation in Atget lines, possibly as a result of reduced SNARE biogenesis. Overexpression of AtGET3a in a receptor knockout (KO) results in severe growth defects, suggesting presence of alternative insertion pathways while highlighting an intricate involvement for the GET pathway in cellular homeostasis of plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Membrana Celular/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteínas SNARE/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Homeostasis/fisiología , Mamíferos/fisiología , Fusión de Membrana/fisiología , Chaperonas Moleculares/metabolismo , Filogenia , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas SNARE/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida
3.
Methods Mol Biol ; 2772: 207-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411816

RESUMEN

Protein-protein interactions (PPIs) play fundamental roles in all cellular processes. Especially membrane proteins facilitate a range of important biological functions in stimuli perception, signalling, and transport. Here we describe a detailed protocol for the yeast mating-based Split-Ubiquitin System (mbSUS) to study PPIs of ER membrane proteins in vivo. In contrast to the prominent yeast two hybrid, mbSUS enables analysis of full-length membrane proteins in their native cellular context. The system is based on the ubiquitin proteasome pathway leading to the release of an artificial transcription factor followed by activation of reporter genes to visualize PPIs. The mating-based approach is suitable for both small- and large-scale interaction studies. Additionally, we describe protocols to apply the recently established SUS Bridge assay (SUB), which is optimized for the detection of ternary protein interactions.


Asunto(s)
Saccharomyces cerevisiae , Ubiquitina , Saccharomyces cerevisiae/genética , Comunicación Celular , Retículo Endoplásmico , Proteínas de la Membrana
4.
Methods Mol Biol ; 1691: 191-203, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043679

RESUMEN

Protein-protein interactions (PPIs) play fundamental roles in all cellular processes. Especially membrane proteins facilitate a range of important biological functions in stimuli perception, signaling, and transport. Here we describe a detailed protocol for the yeast mating-based Split-Ubiquitin System (mbSUS) to study PPIs of ER membrane proteins in vivo. In contrast to the prominent Yeast Two-Hybrid, mbSUS enables analysis of full-length membrane proteins in their native cellular context. The system is based on the ubiquitin proteasome pathway leading to the release of an artificial transcription factor followed by activation of reporter genes to visualize PPIs. The mating-based approach is suitable for both small- and large-scale interaction studies. Additionally, we describe protocols to apply the recently established SUS Bridge assay (SUB) which is optimized for the detection of ternary protein interactions.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Ubiquitina/metabolismo , Unión Proteica , Transformación Genética , Técnicas del Sistema de Dos Híbridos , Flujo de Trabajo
5.
Methods Mol Biol ; 1794: 49-60, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29855950

RESUMEN

The in vivo analysis of protein-protein interactions (PPIs) is a critical factor for gaining insights into cellular mechanisms and their biological functions. To that end, a constantly growing number of genetic tools has been established, some of which are using baker's yeast (Saccharomyces cerevisiae) as a model organism. Here, we provide a detailed protocol for the yeast mating-based split-ubiquitin system (mbSUS) to study binary interactions among or with full-length membrane proteins in their native subcellular environment. The system is based on the reassembly of two autonomously non-functional ubiquitin moieties attached to proteins of interest (POIs) into a native-like molecule followed by the release of a transcription factor. Upon its nuclear import, the activation of reporter gene expression gives a visual output via growth on interaction-selective media. Additionally, we apply a modification of the classical split-ubiquitin technique called CytoSUS that detects interactions of non-membrane/soluble proteins in their full-length form via translational fusion of an ER membrane anchor.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Unión Proteica , Saccharomyces cerevisiae , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA