Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(19): 8738-8747, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32292028

RESUMEN

The reaction of [UO2(N(SiMe3)2)2(THF)2] with 1 equiv of Cy7Si7O9(OH)3 in THF affords [U(OSiMe3)3(Cy7Si7O12)] (1) as orange plates in 24% isolated yield. Its X-ray crystal structure reveals three silylated Oyl ligands, confirming the unprecedented conversion of the uranyl ion to a U(VI) silyloxide. We propose that the formation of 1 proceeds through a transient uranyl silsesquioxide intermediate, [{Cy7Si7O11(OH)}UO2], which undergoes rapid oxo silylation by HN(SiMe3)2, followed by silyloxy ligand scrambling, to form 1 and the U(VI) bis(silsesquioxane) complex, [U(Cy7Si7O12)2] (3), among other products. The formation of 3 was confirmed by its independent synthesis and comparison of its 29Si{1H} NMR spectrum with that of the in situ reaction mixture. In contrast to the reaction in THF, the reaction of [UO2(N(SiMe3)2)2(THF)2] with Cy7Si7O9(OH)3 in hexanes, followed by recrystallization from Et2O/MeCN, results in the formation of the uranyl cluster, [(UO2)3(Cy7Si7O12)2(Et2O)(MeCN)2] (2), as yellow rods in 42% isolated yield. Complex 2 features two Oyl···U dative interactions, but in contrast to 1, none of its three uranyl fragments are silylated. Overall, the conversion of [UO2(N(SiMe3)2)2(THF)2] to 1 and 3 is likely promoted by the strong electron donor ability of the silsesquioxane ligand and suggests that the actinide coordination chemistry of mineral surface mimics, such as silsesquioxane, is a fruitful arena for the discovery of new reactivity.

2.
Inorg Chem ; 58(19): 12654-12661, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31549824

RESUMEN

Reaction of [Ce(NO3)3(THF)4] with 6 equiv of Li(N═CtBuPh), followed by addition of 0.5 equiv of I2, affords the homoleptic Ce(IV) ketimide [Li]2[Ce(N═CtBuPh)6] (1), which can be isolated in 44% yield after workup. Similarly, reaction of [ThCl4(DME)2] (DME = 1,2-dimethoxyethane) with 6 equiv of Li(N═CtBuPh) in tetrahydrofuran affords the isostructural Th(IV) ketimide [Li]2[Th(N═CtBuPh)6] (2), which can be isolated in 53% yield after workup. Both 1 and 2 were fully characterized, including analysis by X-ray crystallography, allowing for a detailed structural and spectroscopic comparison. The electronic structures of 1 and 2 were also explored with density functional theory and multiconfigurational wave function calculations. Additionally, the redox chemistry of 1 was probed by cyclic voltammetry, which revealed a highly cathodic Ce(IV)/Ce(III) reduction potential, providing evidence for the ability of the ketimide ligand to stabilize high oxidation states of the lanthanides.

3.
Inorg Chem ; 57(14): 8317-8324, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29939730

RESUMEN

Reaction of Li2(tmtaa) (tmtaaH2 = dibenzotetramethyltetraaza[14]annulene) with 1 equiv of [UO2Cl2(THF)3], in an attempt to form cis-[UO2(tmtaa)], affords the bis(uranyl) complex [Li(THF)3][Li(THF)2][(UO2Cl2)2(tmtaa)] (1) as a red-brown crystalline solid in modest yield. Complex 1 can be synthesized rationally by reaction of Li2(tmtaa) with 2 equiv of [UO2Cl2(THF)3]. Under these conditions, it can be isolated in 44% yield. In the solid state, complex 1 features two [UO2Cl2] fragments that are bridged by a highly puckered (tmtaa)2- ligand. Both uranyl fragments feature normal uranyl metrical parameters (U-O (av.) = 1.78 Å, O-U-O = 176.8(3)° and 178.0(3)°). The most notable structural feature of 1, however, is the presence of a lithium cation that coordinates to an oxo ligand from each uranyl fragment. In contrast to the Li2(tmtaa) reaction, addition of [K(DME)]2[tmtaa] to 1 equiv of [UO2Cl2(THF)3] results in formation of the 2e- oxidation products of (tmtaa)2-. Three isomers of C22H22N4 (compounds 2, 3, and 4) were isolated as a mixture of orange crystals in 41% combined yield. All three isomers were characterized by X-ray crystallography. We hypothesize that these ligand oxidation products are formed upon decomposition of the unobserved cis uranyl intermediate, cis-[UO2(tmtaa)], which undergoes a facile intramolecular redox reaction.

4.
Inorg Chem ; 56(11): 6638-6644, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28504885

RESUMEN

Reaction of [UO2(N(SiMe3)2)2(THF)2] with 1 equiv of dibenzotetramethyltetraaza[14]annulene (tmtaaH2) affords the uranyl complex [UO2(tmtaaH)(N(SiMe3)2) (THF)] (1) (THF = tetrahydrofuran) as red blocks in 83% yield. Similarly, thermolysis of a mixture of [UO2(N(SiMe3)2)2(THF)2] and 2 equiv of tmtaaH2 affords [UO2(tmtaaH)2] (2), which can be isolated as red-orange crystals in 67% yield after workup. Both 1 and 2 were fully characterized, including analysis by X-ray crystallography. The tmtaaH ligands in 1 and 2 are only coordinated to the uranium center via one ß-diketiminate fragment, while the protonated ß-diketimine portion of the ligand remains uncoordinated. Reaction of [UO2(N(SiMe3)2)2(THF)2] with 1 equiv of Li2(tmtaa) in C6H6 results in the formation of [Li(THF)]2[UO2(N(SiMe3)2)2(tmtaa)] (3), which can be isolated in 55% yield as a red-brown crystalline solid. The tmtaa ligand in complex 3 supports a dative interaction between an oxo ligand in the uranyl fragment and a lithium cation, suggesting that tmtaa could be a useful ligand for developing the oxo ligand functionalization chemistry of the uranyl ion.

5.
Mater Horiz ; 10(6): 2047-2052, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37039330

RESUMEN

Reaction of poly(vinyl chloride) (PVC) with 5 equiv. of triethyl silane in THF, in the presence of in situ generated (xantphos)RhCl catalyst, results in partial reduction of PVC via hydrodechlorination to yield poly(vinyl chloride-co-ethylene). Increasing catalyst loading or using N,N-dimethylacetamide (DMA) as a solvent both diminished selectivity for hydrodechlorination, promoting competitive dehydrochlorination reactions. Reaction of PVC with 2 equiv. of sodium formate in THF in the presence of (xantphos)RhCl affords excellent selectivity for hydrodechlorination along with complete PVC dechlorination, yielding polyethylene-like polymers. Higher catalyst loadings were necessary to activate PVC towards reduction in this case. In contrast, reaction of PVC with 1 equiv. of NaH in DMA, in the presence of (xantphos)RhCl, exhibited good selectivity for dehydrochlorination, as well as much higher reaction rates. These results combined shed light on the interplay between critical reaction parameters that control PVC's mode of reactivity.

6.
Chem Sci ; 13(35): 10437-10447, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277642

RESUMEN

The ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a promising route to sustainable aliphatic polyesters with diverse mechanical and thermal properties. Here, simple yttrium chloride salts (YCl3THF3.5 and YCl3·6H2O), in combination with a bis(triphenylphosphoranylidene)ammonium chloride [PPN]Cl cocatalyst, are used as efficient and controlled catalysts for ten epoxide and anhydride combinations. In comparison to past literature, this simple salt system exhibits competitive turn-over frequencies (TOFs) for most monomer pairs. Despite no supporting ligand framework, these salts provide excellent control of dispersity, with suppression of side reactions. Using these catalysts, the highest molecular weight reported to date (302.2 kDa) has been obtained with a monosubstituted epoxide and tricyclic anhydride. These data indicate that excellent molecular weight control and suppression of side reactions for ROCOP of epoxides and cyclic anhydrides can coincide with high activity using a simple catalytic system, warranting further research in working towards industrial viability.

7.
Chem Sci ; 8(11): 7873-7878, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29163924

RESUMEN

Reaction of [Ce(NR2)3] (R = SiMe3) with LiNO3 in THF, in the presence of 2,2,2-cryptand, results in the formation of the Ce(iii) "ate" complex, [Li(2,2,2-cryptand)][Ce(κ2-O2NO)(NR2)3] (1) in 38% yield. Photolysis of 1 at 380 nm affords [Li(2,2,2-cryptand)][Ce(O)(NR2)3] (2), in 33% isolated yield after reaction work-up. Complex 2 is the first reported example of a Ce(iv) oxo complex where the oxo ligand is not supported by hydrogen bonding or alkali metal coordination. Also formed during photolysis are [Li(2,2,2-cryptand)]2[(µ3-O){Ce(µ-O)(NR2)2}3] (3) and [Li(2,2,2-cryptand)][Ce(OSiMe3)(NR2)3] (4). Their identities were confirmed by X-ray crystallography. Complex 4 can also be prepared via reaction of [Ce(NR2)3] with LiOSiMe3 in THF, in the presence of 2,2,2-cryptand. When synthesized in this fashion, 4 can be isolated in 47% yield. To rationalize the presence of 2, 3, and 4 in the reaction mixture, we propose that photolysis of 1 first generates 2 and NO2, via homolytic cleavage of the N-O bond in its nitrate co-ligand. Complex 2 then undergoes decomposition via two separate routes: (1) ligand scrambling and oligomerization to form 3; and, (2) abstraction of a trimethylsilyl cation to form a transient Ce(iv) silyloxide, [CeIV(OSiMe3)(NR2)3], followed by 1e- reduction to form 4. Alternatively, complex 4 could form directly via ·SiMe3 abstraction by 2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA