Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 139(7): 1080-1097, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34695195

RESUMEN

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/patología , Proteínas de Fusión Oncogénica/metabolismo , Fosfolipasa C gamma/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Animales , Autorrenovación de las Células , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Proteínas de Fusión Oncogénica/genética , Fosfolipasa C gamma/genética , Proteoma , Proteína 1 Compañera de Translocación de RUNX1/genética , Transcriptoma , Translocación Genética
2.
Blood ; 140(17): 1875-1890, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35839448

RESUMEN

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.


Asunto(s)
Proteína de la Leucemia Mieloide-Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Epigénesis Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genes Reguladores , Cromatina
3.
PLoS Comput Biol ; 15(11): e1007337, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682597

RESUMEN

Gene expression governs cell fate, and is regulated via a complex interplay of transcription factors and molecules that change chromatin structure. Advances in sequencing-based assays have enabled investigation of these processes genome-wide, leading to large datasets that combine information on the dynamics of gene expression, transcription factor binding and chromatin structure as cells differentiate. While numerous studies focus on the effects of these features on broader gene regulation, less work has been done on the mechanisms of gene-specific transcriptional control. In this study, we have focussed on the latter by integrating gene expression data for the in vitro differentiation of murine ES cells to macrophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics and transcription factor binding. Combining a novel strategy to identify communities of related control elements with a penalized regression approach, we developed individual models to identify the potential control elements predictive of the expression of each gene. Our models were compared to an existing method and evaluated using the existing literature and new experimental data from embryonic stem cell differentiation reporter assays. Our method is able to identify transcriptional control elements in a gene specific manner that reflect known regulatory relationships and to generate useful hypotheses for further testing.


Asunto(s)
Diferenciación Celular/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Elementos Reguladores de la Transcripción/genética , Animales , Diferenciación Celular/fisiología , Cromatina/metabolismo , Bases de Datos Genéticas , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica/genética , Genoma , Macrófagos/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
4.
Development ; 143(23): 4324-4340, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802171

RESUMEN

The transmission of extracellular signals into the nucleus involves inducible transcription factors, but how different signalling pathways act in a cell type-specific fashion is poorly understood. Here, we studied the regulatory role of the AP-1 transcription factor family in blood development using embryonic stem cell differentiation coupled with genome-wide transcription factor binding and gene expression analyses. AP-1 factors respond to MAP kinase signalling and comprise dimers of FOS, ATF and JUN proteins. To examine genes regulated by AP-1 and to examine how it interacts with other inducible transcription factors, we abrogated its global DNA-binding activity using a dominant-negative FOS peptide. We show that FOS and JUN bind to and activate a specific set of vascular genes and that AP-1 inhibition shifts the balance between smooth muscle and hematopoietic differentiation towards blood. Furthermore, AP-1 is required for de novo binding of TEAD4, a transcription factor connected to Hippo signalling. Our bottom-up approach demonstrates that AP-1- and TEAD4-associated cis-regulatory elements form hubs for multiple signalling-responsive transcription factors and define the cistrome that regulates vascular and hematopoietic development by extrinsic signals.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Proteínas Musculares/metabolismo , Músculo Liso Vascular/citología , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción Activadores/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Proteínas de Unión al ADN/genética , Expresión Génica/genética , Perfilación de la Expresión Génica , Ratones , Músculo Liso Vascular/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción de Dominio TEA , Factor de Transcripción AP-1/antagonistas & inhibidores
5.
Blood ; 130(10): 1213-1222, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28710059

RESUMEN

Understanding and blocking the self-renewal pathway of preleukemia stem cells could prevent acute myeloid leukemia (AML) relapse. In this study, we show that increased FOXO1 represents a critical mechanism driving aberrant self-renewal in preleukemic cells expressing the t(8;21)-associated oncogene AML1-ETO (AE). Although generally considered as a tumor suppressor, FOXO1 is consistently upregulated in t(8;21) AML. Expression of FOXO1 in human CD34+ cells promotes a preleukemic state with enhanced self-renewal and dysregulated differentiation. The DNA binding domain of FOXO1 is essential for these functions. FOXO1 activates a stem cell molecular signature that is also present in AE preleukemia cells and preserved in t(8;21) patient samples. Genome-wide binding studies show that AE and FOXO1 share the majority of their binding sites, whereby FOXO1 binds to multiple crucial self-renewal genes and is required for their activation. In agreement with this observation, genetic and pharmacological ablation of FOXO1 inhibited the long-term proliferation and clonogenicity of AE cells and t(8;21) AML cell lines. Targeting of FOXO1 therefore provides a potential therapeutic strategy for elimination of stem cells at both preleukemic and leukemic stages.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteína Forkhead Box O1/metabolismo , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Proteínas de Fusión Oncogénica/metabolismo , Lesiones Precancerosas/genética , Animales , Antígenos CD34/metabolismo , Línea Celular Tumoral , Proliferación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Genoma Humano , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , Ratones SCID , Proteínas de Fusión Oncogénica/genética , Lesiones Precancerosas/patología , Proteína 1 Compañera de Translocación de RUNX1 , Regulación hacia Arriba/genética
6.
Nucleic Acids Res ; 45(17): 9874-9888, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973433

RESUMEN

LMO2 is a bridging factor within a DNA binding complex and is required for definitive haematopoiesis to occur. The developmental stage of the block in haematopoietic specification is not known. We show that Lmo2-/- mouse embryonic stem cells differentiated to Flk-1+ haemangioblasts, but less efficiently to haemogenic endothelium, which only produced primitive haematopoietic progenitors. Genome-wide approaches indicated that LMO2 is required at the haemangioblast stage to position the TAL1/LMO2/LDB1 complex to regulatory elements that are important for the establishment of the haematopoietic developmental program. In the absence of LMO2, the target site recognition of TAL1 is impaired. The lack of LMO2 resulted in altered gene expression levels already at the haemangioblast stage, with transcription factor genes accounting for ∼15% of affected genes. Comparison of Lmo2-/- with Tal1-/- Flk-1+ cells further showed that TAL1 was required to initiate or sustain Lmo2 expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , ADN/genética , Genoma , Hemangioblastos/metabolismo , Proteínas con Dominio LIM/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Diferenciación Celular , Línea Celular , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos/citología , Hematopoyesis/genética , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Unión Proteica , Proteínas Proto-Oncogénicas/deficiencia , Elementos Reguladores de la Transcripción , Transducción de Señal , Proteína 1 de la Leucemia Linfocítica T Aguda , Transcripción Genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
7.
Development ; 141(12): 2391-401, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24850855

RESUMEN

Mammalian development is regulated by the interplay of tissue-specific and ubiquitously expressed transcription factors, such as Sp1. Sp1 knockout mice die in utero with multiple phenotypic aberrations, but the underlying molecular mechanism of this differentiation failure has been elusive. Here, we have used conditional knockout mice as well as the differentiation of mouse ES cells as a model with which to address this issue. To this end, we examined differentiation potential, global gene expression patterns and Sp1 target regions in Sp1 wild-type and Sp1-deficient cells representing different stages of hematopoiesis. Sp1(-/-) cells progress through most embryonic stages of blood cell development but cannot complete terminal differentiation. This failure to fully differentiate is not seen when Sp1 is knocked out at later developmental stages. For most Sp1 target and non-target genes, gene expression is unaffected by Sp1 inactivation. However, Cdx genes and multiple Hox genes are stage-specific targets of Sp1 and are downregulated at an early stage. As a consequence, expression of genes involved in hematopoietic specification is progressively deregulated. Our work demonstrates that the early absence of active Sp1 sets a cascade in motion that culminates in a failure of terminal hematopoietic differentiation and emphasizes the role of ubiquitously expressed transcription factors for tissue-specific gene regulation. In addition, our global side-by-side analysis of the response of the transcriptional network to perturbation sheds a new light on the regulatory hierarchy of hematopoietic specification.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/citología , Factor de Transcripción Sp1/fisiología , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Macrófagos/citología , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Unión Proteica , Células Madre/citología
8.
EMBO J ; 31(22): 4318-33, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23064151

RESUMEN

Cell fate decisions during haematopoiesis are governed by lineage-specific transcription factors, such as RUNX1, SCL/TAL1, FLI1 and C/EBP family members. To gain insight into how these transcription factors regulate the activation of haematopoietic genes during embryonic development, we measured the genome-wide dynamics of transcription factor assembly on their target genes during the RUNX1-dependent transition from haemogenic endothelium (HE) to haematopoietic progenitors. Using a Runx1-/- embryonic stem cell differentiation model expressing an inducible Runx1 gene, we show that in the absence of RUNX1, haematopoietic genes bind SCL/TAL1, FLI1 and C/EBPß and that this early priming is required for correct temporal expression of the myeloid master regulator PU.1 and its downstream targets. After induction, RUNX1 binds to numerous de novo sites, initiating a local increase in histone acetylation and rapid global alterations in the binding patterns of SCL/TAL1 and FLI1. The acquisition of haematopoietic fate controlled by Runx1 therefore does not represent the establishment of a new regulatory layer on top of a pre-existing HE program but instead entails global reorganization of lineage-specific transcription factor assemblies.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Epigénesis Genética/fisiología , Hematopoyesis/fisiología , Acetilación , Animales , Secuencia de Bases , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Embrionarias/fisiología , Epigénesis Genética/genética , Hematopoyesis/genética , Histonas/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Factores de Transcripción/fisiología
9.
BMC Genomics ; 16: 1000, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26608661

RESUMEN

BACKGROUND: The analysis of differential gene expression is a fundamental tool to relate gene regulation with specific biological processes. Differential binding of transcription factors (TFs) can drive differential gene expression. While DNase-seq data can provide global snapshots of TF binding, tools for detecting differential binding from pairs of DNase-seq data sets are lacking. RESULTS: In order to link expression changes with changes in TF binding we introduce the concept of differential footprinting alongside a computational tool. We demonstrate that differential footprinting is associated with differential gene expression and can be used to define cell types by their specific TF occupancy patterns. CONCLUSIONS: Our new tool, Wellington-bootstrap, will enable the detection of differential TF binding facilitating the study of gene regulatory systems.


Asunto(s)
Sitios de Unión , Biología Computacional/métodos , Huella de ADN , Desoxirribonucleasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Factores de Transcripción/metabolismo , Antígenos CD19/metabolismo , Subgrupos de Linfocitos B/metabolismo , Linfocitos T CD8-positivos/metabolismo , Análisis por Conglomerados , Huella de ADN/métodos , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos/genética , Unión Proteica
10.
Nat Commun ; 15(1): 1359, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355578

RESUMEN

Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Células Madre/metabolismo , Células Madre Neoplásicas/metabolismo
11.
Blood ; 117(10): 2827-38, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21239694

RESUMEN

The transcription factor PU.1 occupies a central role in controlling myeloid and early B-cell development, and its correct lineage-specific expression is critical for the differentiation choice of hematopoietic progenitors. However, little is known of how this tissue-specific pattern is established. We previously identified an upstream regulatory cis element whose targeted deletion in mice decreases PU.1 expression and causes leukemia. We show here that the upstream regulatory cis element alone is insufficient to confer physiologic PU.1 expression in mice but requires the cooperation with other, previously unidentified elements. Using a combination of transgenic studies, global chromatin assays, and detailed molecular analyses we present evidence that PU.1 is regulated by a novel mechanism involving cross talk between different cis elements together with lineage-restricted autoregulation. In this model, PU.1 regulates its expression in B cells and macrophages by differentially associating with cell type-specific transcription factors at one of its cis-regulatory elements to establish differential activity patterns at other elements.


Asunto(s)
Linfocitos B/metabolismo , Regulación de la Expresión Génica/genética , Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas/genética , Elementos Reguladores de la Transcripción/genética , Transactivadores/genética , Animales , Southern Blotting , Western Blotting , Separación Celular , Retroalimentación Fisiológica/fisiología , Citometría de Flujo , Expresión Génica , Hematopoyesis/genética , Humanos , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/metabolismo
12.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503022

RESUMEN

AML is a heterogenous disease caused by different mutations. We have previously shown that each mutational sub-type develops its specific gene regulatory network (GRN) with transcription factors interacting with multiple gene modules, many of which are transcription factor genes themselves. Here we hypothesized that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We tested this hypothesis using FLT3-ITD mutated AML as a model and conducted an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict identifying crucial regulatory modules required for AML but not normal cellular growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD AML and that its removal leads to GRN collapse and cell death.

13.
Leukemia ; 37(1): 102-112, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333583

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by mutations in genes encoding transcriptional and epigenetic regulators together with signaling genes. It is characterized by a disturbance of differentiation and abnormal proliferation of hematopoietic progenitors. We have previously shown that each AML subtype establishes its own core gene regulatory network (GRN), consisting of transcription factors binding to their target genes and imposing a specific gene expression pattern that is required for AML maintenance. In this study, we integrate gene expression, open chromatin and ChIP data with promoter-capture Hi-C data to define a refined core GRN common to all patients with CEBPA-double mutant (CEBPAN/C) AML. These mutations disrupt the structure of a major regulator of myelopoiesis. We identify the binding sites of mutated C/EBPα proteins in primary cells, we show that C/EBPα, AP-1 factors and RUNX1 colocalize and are required for AML maintenance, and we employ single cell experiments to link important network nodes to the specific differentiation trajectory from leukemic stem to blast cells. Taken together, our study provides an important resource which predicts the specific therapeutic vulnerabilities of this AML subtype in human cells.


Asunto(s)
Redes Reguladoras de Genes , Leucemia Mieloide Aguda , Humanos , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Mutación , Diferenciación Celular/genética , Leucemia Mieloide Aguda/patología
14.
Cell Rep ; 42(12): 113568, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38104314

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease caused by different mutations. Previously, we showed that each mutational subtype develops its specific gene regulatory network (GRN) with transcription factors interacting within multiple gene modules, many of which are transcription factor genes themselves. Here, we hypothesize that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We test this hypothesis using FLT3-ITD-mutated AML as a model and conduct an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict crucial regulatory modules required for AML growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD+ AML and that its removal leads to GRN collapse and cell death.


Asunto(s)
Redes Reguladoras de Genes , Leucemia Mieloide Aguda , Humanos , Regulón , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación/genética , ARN Interferente Pequeño , Tirosina Quinasa 3 Similar a fms/genética
15.
Nat Commun ; 14(1): 6947, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935654

RESUMEN

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Asunto(s)
Factores Reguladores del Interferón , Linfoma , Humanos , Linfocitos B/metabolismo , ADN , Regulación de la Expresión Génica , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Linfoma/genética
16.
Nucleic Acids Res ; 38(6): e86, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20008102

RESUMEN

Protein-protein interactions (PPIs) are ubiquitous in Biology, and thus offer an enormous potential for the discovery of novel therapeutics. Although protein interfaces are large and lack defining physiochemical traits, is well established that only a small portion of interface residues, the so-called hot spot residues, contribute the most to the binding energy of the protein complex. Moreover, recent successes in development of novel drugs aimed at disrupting PPIs rely on targeting such residues. Experimental methods for describing critical residues are lengthy and costly; therefore, there is a need for computational tools that can complement experimental efforts. Here, we describe a new computational approach to predict hot spot residues in protein interfaces. The method, called Presaging Critical Residues in Protein interfaces (PCRPi), depends on the integration of diverse metrics into a unique probabilistic measure by using Bayesian Networks. We have benchmarked our method using a large set of experimentally verified hot spot residues and on a blind prediction on the protein complex formed by HRAS protein and a single domain antibody. Under both scenarios, PCRPi delivered consistent and accurate predictions. Finally, PCRPi is able to handle cases where some of the input data is either missing or not reliable (e.g. evolutionary information).


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Aminoácidos/química , Teorema de Bayes , Biología Computacional , Región Variable de Inmunoglobulina/química , Modelos Moleculares , Conformación Proteica , Proteínas/química , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Programas Informáticos
17.
Cell Rep ; 35(3): 109010, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882316

RESUMEN

Acute myeloid leukemia (AML) is caused by recurrent mutations in members of the gene regulatory and signaling machinery that control hematopoietic progenitor cell growth and differentiation. Here, we show that the transcription factor WT1 forms a major node in the rewired mutation-specific gene regulatory networks of multiple AML subtypes. WT1 is frequently either mutated or upregulated in AML, and its expression is predictive for relapse. The WT1 protein exists as multiple isoforms. For two main AML subtypes, we demonstrate that these isoforms exhibit differential patterns of binding and support contrasting biological activities, including enhanced proliferation. We also show that WT1 responds to oncogenic signaling and is part of a signaling-responsive transcription factor hub that controls AML growth. WT1 therefore plays a central and widespread role in AML biology.


Asunto(s)
Cromatina/química , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Neoplasias Pulmonares/genética , Proteínas WT1/genética , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cromatina/metabolismo , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/clasificación , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/genética , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Transducción de Señal , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Translocación Genética , Proteínas WT1/antagonistas & inhibidores , Proteínas WT1/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
18.
Nat Commun ; 12(1): 520, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483506

RESUMEN

The fusion oncogene RUNX1/RUNX1T1 encodes an aberrant transcription factor, which plays a key role in the initiation and maintenance of acute myeloid leukemia. Here we show that the RUNX1/RUNX1T1 oncogene is a regulator of alternative RNA splicing in leukemic cells. The comprehensive analysis of RUNX1/RUNX1T1-associated splicing events identifies two principal mechanisms that underlie the differential production of RNA isoforms: (i) RUNX1/RUNX1T1-mediated regulation of alternative transcription start site selection, and (ii) direct or indirect control of the expression of genes encoding splicing factors. The first mechanism leads to the expression of RNA isoforms with alternative structure of the 5'-UTR regions. The second mechanism generates alternative transcripts with new junctions between internal cassettes and constitutive exons. We also show that RUNX1/RUNX1T1-mediated differential splicing affects several functional groups of genes and produces proteins with unique conserved domain structures. In summary, this study reveals alternative splicing as an important component of transcriptome re-organization in leukemia by an aberrant transcriptional regulator.


Asunto(s)
Empalme Alternativo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide/genética , Proteínas de Fusión Oncogénica/genética , Proteína 1 Compañera de Translocación de RUNX1/genética , Enfermedad Aguda , Línea Celular Tumoral , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Leucemia Mieloide/patología , Modelos Genéticos , Proteínas de Fusión Oncogénica/metabolismo , Interferencia de ARN , Isoformas de ARN/genética , Isoformas de ARN/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Sitio de Iniciación de la Transcripción
19.
Exp Hematol ; 92: 62-74, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33152396

RESUMEN

Acute myeloid leukemia development occurs in a stepwise fashion whereby an original driver mutation is followed by additional mutations. The first type of mutations tends to be in genes encoding members of the epigenetic/transcription regulatory machinery (i.e., RUNX1, DNMT3A, TET2), while the secondary mutations often involve genes encoding members of signaling pathways that cause uncontrolled growth of such cells such as the growth factor receptors c-KIT of FLT3. Patients usually present with both types of mutations, but it is currently unclear how both mutational events shape the epigenome in developing AML cells. To this end we generated an in vitro model of t(8;21) AML by expressing its driver oncoprotein RUNX1-ETO with or without a mutated (N822K) KIT protein. Expression of N822K-c-KIT strongly increases the self-renewal capacity of RUNX1-ETO-expressing cells. Global analysis of gene expression changes and alterations in the epigenome revealed that N822K-c-KIT expression profoundly influences the open chromatin landscape and transcription factor binding. However, our experiments also revealed that double mutant cells still differ from their patient-derived counterparts, highlighting the importance of studying patient cells to obtain a true picture of how gene regulatory networks have been reprogrammed during tumorigenesis.


Asunto(s)
Cromatina/metabolismo , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Leucemia Mieloide Aguda , Mutación Missense , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Transcripción Genética , Translocación Genética , Sustitución de Aminoácidos , Cromatina/patología , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 21/metabolismo , Cromosomas Humanos Par 8/genética , Cromosomas Humanos Par 8/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Regulación Leucémica de la Expresión Génica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Proteínas Proto-Oncogénicas c-kit/genética , Proteína 1 Compañera de Translocación de RUNX1/genética
20.
Cancer Inform ; 18: 1176935119859863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263370

RESUMEN

Acute myeloid leukemia (AML) is a highly heterogeneous cancer associated with different patterns of gene expression determined by the nature of their DNA mutations. These mutations mostly act to deregulate gene expression by various mechanisms at the level of the nucleus. By performing genome-wide epigenetic profiling of cis-regulatory elements, we found that AML encompasses different mutation-specific subclasses associated with the rewiring of the gene regulatory networks that drive differentiation into different directions away from normal myeloid development. By integrating epigenetic profiles with gene expression and chromatin conformation data, we defined pathways within gene regulation networks that were differentially rewired within each mutation-specific subclass of AML. This analysis revealed 2 major classes of AML: one class defined by mutations in signaling molecules that activate AP-1 via the mitogen-activated protein (MAP) kinase pathway and a second class defined by mutations within genes encoding transcription factors such as RUNX1/CBFß and C/EBPα. By identifying specific DNA motifs protected from DNase I digestion at cis-regulatory elements, we were able to infer candidate transcription factors bound to these motifs. These integrated analyses allowed the identification of AML subtype-specific core regulatory networks that are required for AML development and maintenance, which could now be targeted in personalized therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA