Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Trop ; 233: 106552, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35671784

RESUMEN

Chagas disease is potentially life-threatening and caused by the protozoan parasite Trypanosoma cruzi. The parasite cannot synthesize some lipids and depends on the uptake of these lipids from its vertebrate and invertebrate hosts. To achieve this, T. cruzi may need to modify the physiology of the insect host for its own benefit. In this study, we investigated the interaction of T. cruzi (Y strain) with its insect vector Rhodnius prolixus and how it manipulates the vector lipid metabolism. We observed a physiological change in lipid flux in of infected insects. In the fat body of infected insects, triacylglycerol levels decreased by 80.6% and lipid storage droplet-1(LSD-1) mRNA levels were lower, when compared to controls. Lipid sequestration by infected midguts led to increased levels of 5' AMP-activated protein kinase (AMPK) phosphorylation and activation in the fat body, inhibiting the synthesis of fatty acids and stimulating their oxidation. This led to reduced lipid levels in the fat body of infected insets, despite the fact that T. cruzi does not colonize this tissue. There was a 3-fold increase, in lipid uptake and synthesis in the midgut of infected insects. Finally, our results suggest that the parasite modifies the lipid flux and metabolism of its vector R. prolixus through the increase in lipid delivery from the fat body to midgut that are then scavenge by T cruzi.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Trypanosoma cruzi , Animales , Enfermedad de Chagas/parasitología , Metabolismo de los Lípidos , Fosfolípidos/metabolismo , Rhodnius/parasitología , Trypanosoma cruzi/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA