Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Pathog ; 19(11): e1011813, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011306

RESUMEN

Innate immune signaling in the central nervous system (CNS) exhibits many remarkable specializations that vary across cell types and CNS regions. In the setting of neuroinvasive flavivirus infection, neurons employ the immunologic kinase receptor-interacting kinase 3 (RIPK3) to promote an antiviral transcriptional program, independently of the traditional function of this enzyme in promoting necroptotic cell death. However, while recent work has established roles for neuronal RIPK3 signaling in controlling mosquito-borne flavivirus infections, including West Nile virus and Zika virus, functions for RIPK3 signaling in the CNS during tick-borne flavivirus infection have not yet been explored. Here, we use a model of Langat virus (LGTV) encephalitis to show that RIPK3 signaling is specifically required in neurons of the cerebellum to control LGTV replication and restrict disease pathogenesis. This effect did not require the necroptotic executioner molecule mixed lineage kinase domain like protein (MLKL), a finding similar to previous observations in models of mosquito-borne flavivirus infection. However, control of LGTV infection required a unique, region-specific dependence on RIPK3 to promote expression of key antiviral interferon-stimulated genes (ISG) in the cerebellum. This RIPK3-mediated potentiation of ISG expression was associated with robust cell-intrinsic restriction of LGTV replication in cerebellar granule cell neurons. These findings further illuminate the complex roles of RIPK3 signaling in the coordination of neuroimmune responses to viral infection, as well as provide new insight into the mechanisms of region-specific innate immune signaling in the CNS.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Enfermedades por Picaduras de Garrapatas , Garrapatas , Animales , Encéfalo/patología , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/patología , Interferones/metabolismo , Enfermedades por Picaduras de Garrapatas/patología , Replicación Viral/genética , Ratones
2.
PLoS Pathog ; 18(5): e1010532, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533195

RESUMEN

Ebola virus (EBOV) VP35 is a polyfunctional protein involved in viral genome packaging, viral polymerase function, and host immune antagonism. The mechanisms regulating VP35's engagement in different functions are not well-understood. We previously showed that the host E3 ubiquitin ligase TRIM6 ubiquitinates VP35 at lysine 309 (K309) to facilitate virus replication. However, how K309 ubiquitination regulates the function of VP35 as the viral polymerase co-factor and the precise stage(s) of the EBOV replication cycle that require VP35 ubiquitination are not known. Here, we generated recombinant EBOVs encoding glycine (G) or arginine (R) mutations at VP35/K309 (rEBOV-VP35/K309G/-R) and show that both mutations prohibit VP35/K309 ubiquitination. The K309R mutant retains dsRNA binding and efficient type-I Interferon (IFN-I) antagonism due to the basic residue conservation. The rEBOV-VP35/K309G mutant loses the ability to efficiently antagonize the IFN-I response, while the rEBOV-VP35/K309R mutant's suppression is enhanced. The replication of both mutants was significantly attenuated in both IFN-competent and -deficient cells due to impaired interactions with the viral polymerase. The lack of ubiquitination on VP35/K309 or TRIM6 deficiency disrupts viral transcription with increasing severity along the transcriptional gradient. This disruption of the transcriptional gradient results in unbalanced viral protein production, including reduced synthesis of the viral transcription factor VP30. In addition, lack of ubiquitination on K309 results in enhanced interactions with the viral nucleoprotein and premature nucleocapsid packaging, leading to dysregulation of virus assembly. Overall, we identified a novel role of VP35 ubiquitination in coordinating viral transcription and assembly.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Ebolavirus/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Proteínas de la Nucleocápside/metabolismo , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Transcripción Viral
3.
J Infect Dis ; 228(5): 604-614, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36869692

RESUMEN

The common marmoset (Callithrix jacchus) is increasingly recognized as an ideal nonhuman primate (NHP) at high biocontainment due to its smaller size and relative ease of handling. Here, we evaluated the susceptibility and pathogenesis of Nipah virus Bangladesh strain (NiVB) infection in marmosets at biosafety level 4. Infection via the intranasal and intratracheal route resulted in fatal disease in all 4 infected marmosets. Three developed pulmonary edema and hemorrhage as well as multifocal hemorrhagic lymphadenopathy, while 1 recapitulated neurologic clinical manifestations and cardiomyopathy on gross pathology. Organ-specific innate and inflammatory responses were characterized by RNA sequencing in 6 different tissues from infected and control marmosets. Notably, a unique transcriptome was revealed in the brainstem of the marmoset exhibiting neurological signs. Our results provide a more comprehensive understanding of NiV pathogenesis in an accessible and novel NHP model, closely reflecting clinical disease as observed in NiV patients.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Edema Pulmonar , Animales , Callithrix , Bangladesh
4.
J Neuroinflammation ; 19(1): 100, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35462541

RESUMEN

BACKGROUND: Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. METHODS: We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. RESULTS: Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. CONCLUSIONS: Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.


Asunto(s)
Trastornos Mentales , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Trastornos Mentales/etiología , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Trastornos Mentales/virología , Ratones , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral/fisiología , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo
5.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694946

RESUMEN

Several members of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways, including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In the absence of TRIM6, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite having evolved numerous mechanisms to restrict the vertebrate host's IFN-I response, West Nile virus (WNV) replication is sensitive to pretreatment with IFN-I. However, the regulators and products of the IFN-I pathway that are important in regulating WNV replication are incompletely defined. Consistent with WNV's sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6-KO) A549 cells, WNV replication is significantly increased and IFN-I induction and signaling are impaired compared to wild-type (wt) cells. IFN-ß pretreatment was more effective in protecting against subsequent WNV infection in wt cells than TRIM6-KO, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next-generation sequencing, we identified VAMP8 as a potential factor involved in this TRIM6-mediated antiviral response. VAMP8 knockdown resulted in reduced JAK1 and STAT1 phosphorylation and impaired induction of several interferon-stimulated genes (ISGs) following WNV infection or IFN-ß treatment. Furthermore, VAMP8-mediated STAT1 phosphorylation required the presence of TRIM6. Therefore, the VAMP8 protein is a novel regulator of IFN-I signaling, and its expression and function are dependent on TRIM6 activity. Overall, these results provide evidence that TRIM6 contributes to the antiviral response against WNV and identify VAMP8 as a novel regulator of the IFN-I system.IMPORTANCE WNV is a mosquito-borne flavivirus that poses a threat to human health across large discontinuous areas throughout the world. Infection with WNV results in febrile illness, which can progress to severe neurological disease. Currently, there are no approved treatment options to control WNV infection. Understanding the cellular immune responses that regulate viral replication is important in diversifying the resources available to control WNV. Here, we show that the elimination of TRIM6 in human cells results in an increase in WNV replication and alters the expression and function of other components of the IFN-I pathway through VAMP8. Dissecting the interactions between WNV and host defenses both informs basic molecular virology and promotes the development of host- and virus-targeted antiviral strategies.


Asunto(s)
Inmunidad Innata , Interferón Tipo I/inmunología , Proteínas R-SNARE/inmunología , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Replicación Viral/inmunología , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/fisiología , Células A549 , Eliminación de Gen , Células HEK293 , Humanos , Janus Quinasa 1/genética , Janus Quinasa 1/inmunología , Fosforilación/genética , Fosforilación/inmunología , Proteínas R-SNARE/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Replicación Viral/genética , Fiebre del Nilo Occidental/genética , Fiebre del Nilo Occidental/patología
6.
J Infect Dis ; 218(10): 1602-1610, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-29912426

RESUMEN

Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited. Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP). Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection. Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.


Asunto(s)
Aerosoles/administración & dosificación , Infecciones por Henipavirus , Virus Nipah/patogenicidad , Administración por Inhalación , Animales , Cricetinae , Modelos Animales de Enfermedad , Infecciones por Henipavirus/diagnóstico por imagen , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/transmisión , Infecciones por Henipavirus/virología , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/virología , Mesocricetus , Imagen Óptica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
J Infect Dis ; 218(suppl_5): S438-S447, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30192975

RESUMEN

Marburg virus (MARV; family Filoviridae) causes sporadic outbreaks of Marburg hemorrhagic fever in sub-Saharan Africa with case fatality rates reaching 90%. Wild-type filoviruses, including MARV and the closely related Ebola virus, are unable to suppress the type I interferon response in rodents, and therefore require adaptation of the viruses to cause disease in immunocompetent animals. In the current study, we demonstrate that STAT2 knockout Syrian hamsters are susceptible to infection with different wild-type MARV variants. MARV Musoke causes a robust and systemic infection resulting in lethal disease. Histopathological findings share features similar to those observed in human patients and other animal models of filovirus infection. Reverse-transcription polymerase chain reaction analysis of host transcripts shows a dysregulation of the innate immune response. Our results demonstrate that the STAT2 knockout hamster represents a novel small animal model of severe MARV infection and disease without the requirement for virus adaptation.


Asunto(s)
Enfermedad del Virus de Marburg/etiología , Factor de Transcripción STAT2/fisiología , Animales , Cricetinae , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Masculino , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/patología
8.
J Neuroinflammation ; 15(1): 315, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442185

RESUMEN

BACKGROUND: La Crosse virus (LACV) causes pediatric encephalitis in the USA. LACV induces severe inflammation in the central nervous system, but the recruitment of inflammatory cells is poorly understood. A deeper understanding of LACV-induced neural pathology is needed in order to develop treatment options. However, there is a severe limitation of relevant human neuronal cell models of LACV infection. METHODS: We utilized human neural stem cell (hNSC)-derived neuron/astrocyte co-cultures to study LACV infection in disease-relevant primary cells. hNSCs were differentiated into neurons and astrocytes and infected with LACV. To characterize susceptibility and responses to infection, we measured viral titers and levels of viral RNA, performed immunofluorescence analysis to determine the cell types infected, performed apoptosis and cytotoxicity assays, and evaluated cellular responses to infection using qRT-PCR and Bioplex assays. RESULTS: hNSC-derived neuron/astrocyte co-cultures were susceptible to LACV infection and displayed apoptotic responses as reported in previous in vitro and in vivo studies. Neurons and astrocytes are both targets of LACV infection, with neurons becoming the predominant target later in infection possibly due to astrocytic responses to IFN. Additionally, neuron/astrocyte co-cultures responded to LACV infection with strong proinflammatory cytokine, chemokine, as well as MMP-2, MMP-7, and TIMP-1 responses. CONCLUSIONS: hNSC-derived neuron/astrocyte co-cultures reproduce key aspects of LACV infection in humans and mice and are useful models to study encephalitic viruses. Specifically, we show astrocytes to be susceptible to LACV infection and that neurons and astrocytes are important drivers of the inflammatory responses seen in LACV infection through the production of proinflammatory cytokines and chemokines.


Asunto(s)
Astrocitos/fisiología , Citocinas/metabolismo , Virus La Crosse/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuronas/fisiología , Neuronas/virología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Astrocitos/efectos de los fármacos , Astrocitos/virología , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Regulación de la Expresión Génica/fisiología , Humanos , Etiquetado Corte-Fin in Situ , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Poli I-C/farmacología , ARN Mensajero , Estaurosporina/metabolismo , Factores de Tiempo , Replicación Viral/fisiología
9.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28679761

RESUMEN

Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection.IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35 protein contributes to pathogenesis, because it serves as an essential cofactor of the viral polymerase as well as a potent antagonist of innate immunity. However, how VP35 function is regulated by host cellular factors is poorly understood. Here, we report that the host E3-ubiquitin ligase TRIM6 promotes VP35 ubiquitination and is important for efficient virus replication. Therefore, our study identifies a new host factor, TRIM6, as a potential target in the development of antiviral drugs against EBOV.


Asunto(s)
Ebolavirus/fisiología , Interacciones Huésped-Patógeno , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Humanos , Inmunoprecipitación , Espectrometría de Masas
10.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28539439

RESUMEN

Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets.IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets.


Asunto(s)
Lesión Pulmonar Aguda/patología , Infecciones por Henipavirus/patología , Leucocitos/inmunología , Pulmón/patología , Virus Nipah/crecimiento & desarrollo , Estrés Oxidativo , Animales , Citocinas/análisis , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones SCID
11.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712188

RESUMEN

While recent work has identified roles for immune mediators in the regulation of neural activity, the capacity for cell intrinsic innate immune signaling within neurons to influence neurotransmission remains poorly understood. However, the existing evidence linking immune signaling with neuronal function suggests that modulation of neurotransmission may serve previously undefined roles in host protection during infection of the central nervous system. Here, we identify a specialized function for RIPK3, a kinase traditionally associated with necroptotic cell death, in preserving neuronal survival during neurotropic flavivirus infection through the suppression of excitatory neurotransmission. We show that RIPK3 coordinates transcriptomic changes in neurons that suppress neuronal glutamate signaling, thereby desensitizing neurons to excitotoxic cell death. These effects occur independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promotes phosphorylation of the key neuronal regulatory kinase CaMKII, which in turn activates the transcription factor CREB to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting new mechanisms of neuroimmune crosstalk.

12.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826345

RESUMEN

Flaviviruses pose a significant threat to public health due to their ability to infect the central nervous system (CNS) and cause severe neurologic disease. Astrocytes play a crucial role in the pathogenesis of flavivirus encephalitis through their maintenance of blood-brain barrier (BBB) integrity and their modulation of immune cell recruitment and activation within the CNS. We have previously shown that receptor interacting protein kinase-3 (RIPK3) is a central coordinator of neuroinflammation during CNS viral infection, a function that occurs independently of its canonical function in inducing necroptotic cell death. To date, however, roles for necroptosis-independent RIPK3 signaling in astrocytes are poorly understood. Here, we use mouse genetic tools to induce astrocyte-specific deletion, overexpression, and chemogenetic activation of RIPK3 to demonstrate an unexpected anti-inflammatory function for astrocytic RIPK3. RIPK3 activation in astrocytes was required for host survival in multiple models of flavivirus encephalitis, where it restricted neuropathogenesis by limiting immune cell recruitment to the CNS. Transcriptomic analysis revealed that, despite inducing a traditional pro-inflammatory transcriptional program, astrocytic RIPK3 paradoxically promoted neuroprotection through the upregulation of serpins, endogenous protease inhibitors with broad immunomodulatory activity. Notably, intracerebroventricular administration of SerpinA3N in infected mice preserved BBB integrity, reduced leukocyte infiltration, and improved survival outcomes in mice lacking astrocytic RIPK3. These findings highlight a previously unappreciated role for astrocytic RIPK3 in suppressing pathologic neuroinflammation and suggests new therapeutic targets for the treatment of flavivirus encephalitis.

13.
JCI Insight ; 9(11)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713518

RESUMEN

Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. Receptor interacting protein kinase-3 (RIPK3) signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of damage-associated molecular pattern signaling. In mechanistic experiments, we showed that factors released from dying neurons signaled through receptor for advanced glycation endproducts to induce astrocytic RIPK3 signaling, which conferred inflammatory and neurotoxic functional activity. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.


Asunto(s)
Astrocitos , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Transducción de Señal , Astrocitos/metabolismo , Astrocitos/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Ratones , Humanos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Masculino , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Muerte Celular , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
14.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36747672

RESUMEN

Innate immune signaling in the central nervous system (CNS) exhibits many remarkable specializations that vary across cell types and CNS regions. In the setting of neuroinvasive flavivirus infection, neurons employ the immunologic kinase receptor-interacting kinase 3 (RIPK3) to promote an antiviral transcriptional program, independently of the traditional function of this enzyme in promoting necroptotic cell death. However, while recent work has established roles for neuronal RIPK3 signaling in controlling mosquito-borne flavivirus infections, including West Nile virus and Zika virus, functions for RIPK3 signaling in the CNS during tick-borne flavivirus infection have not yet been explored. Here, we use a model of Langat virus (LGTV) encephalitis to show that RIPK3 signaling is specifically required in neurons of the cerebellum to control LGTV replication and restrict disease pathogenesis. This effect did not require the necroptotic executioner molecule mixed lineage kinase domain like protein (MLKL), a finding similar to previous observations in models of mosquito-borne flavivirus infection. However, control of LGTV infection required a unique, region-specific dependence on RIPK3 to promote expression of key antiviral interferon-stimulated genes (ISG) in the cerebellum. This RIPK3-mediated potentiation of ISG expression was associated with robust cell-intrinsic restriction of LGTV replication in cerebellar granule cell neurons. These findings further illuminate the complex roles of RIPK3 signaling in the coordination of neuroimmune responses to viral infection, as well as provide new insight into the mechanisms of region-specific innate immune signaling in the CNS.

15.
bioRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546744

RESUMEN

Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. RIPK3 signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the MPTP model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of DAMP signaling. Using human cell culture systems, we show that factors released from dying neurons signal through RAGE to induce RIPK3-dependent astrocyte activation. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.

16.
Stem Cell Reports ; 16(8): 1923-1937, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34297942

RESUMEN

Microglia play critical roles in brain development, homeostasis, and disease. Microglia in animal models cannot accurately model human microglia due to notable transcriptomic and functional differences between human and other animal microglia. Incorporating human pluripotent stem cell (hPSC)-derived microglia into brain organoids provides unprecedented opportunities to study human microglia. However, an optimized method that integrates appropriate amounts of microglia into brain organoids at a proper time point, resembling in vivo brain development, is still lacking. Here, we report a new brain region-specific, microglia-containing organoid model by co-culturing hPSC-derived primitive neural progenitor cells and primitive macrophage progenitors. In the organoids, the number of human microglia can be controlled, and microglia exhibit phagocytic activity and synaptic pruning function. Furthermore, human microglia respond to Zika virus infection of the organoids. Our findings establish a new microglia-containing brain organoid model that will serve to study human microglial function in a variety of neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Microglía/metabolismo , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Encéfalo/citología , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Perfilación de la Expresión Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microglía/citología , Microglía/virología , Modelos Neurológicos , Células-Madre Neurales/metabolismo , Organoides/citología , Organoides/virología , Sinapsis/genética , Virus Zika/fisiología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología
17.
Microorganisms ; 10(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35056541

RESUMEN

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East that can affect humans and ruminant livestock. Currently, there are no approved vaccines or therapeutics for the treatment of severe RVF disease in humans. Tilorone-dihydrochloride (Tilorone) is a broad-spectrum antiviral candidate that has previously shown efficacy against a wide range of DNA and RNA viruses, and which is clinically utilized for the treatment of respiratory infections in Russia and other Eastern European countries. Here, we evaluated the antiviral activity of Tilorone against Rift Valley fever virus (RVFV). In vitro, Tilorone inhibited both vaccine (MP-12) and virulent (ZH501) strains of RVFV at low micromolar concentrations. In the mouse model, treatment with Tilorone significantly improved survival outcomes in BALB/c mice challenged with a lethal dose of RVFV ZH501. Treatment with 30 mg/kg/day resulted in 80% survival when administered immediately after infection. In post-exposure prophylaxis, Tilorone resulted in 30% survival at one day after infection when administered at 45 mg/kg/day. These findings demonstrate that Tilorone has potent antiviral efficacy against RVFV infection in vitro and in vivo and supports further development of Tilorone as a potential antiviral therapeutic for treatment of RVFV infection.

18.
Cell Death Dis ; 12(8): 756, 2021 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-34333522

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the death of midbrain dopamine neurons. The pathogenesis of PD is poorly understood, though misfolded and/or aggregated forms of the protein α-synuclein have been implicated in several neurodegenerative disease processes, including neuroinflammation and astrocyte activation. Astrocytes in the midbrain play complex roles during PD, initiating both harmful and protective processes that vary over the course of the disease. However, despite their significant regulatory roles during neurodegeneration, the cellular and molecular mechanisms that promote pathogenic astrocyte activity remain mysterious. Here, we show that α-synuclein preformed fibrils (PFFs) induce pathogenic activation of human midbrain astrocytes, marked by inflammatory transcriptional responses, downregulation of phagocytic function, and conferral of neurotoxic activity. These effects required the necroptotic kinases RIPK1 and RIPK3, but were independent of MLKL and necroptosis. Instead, both transcriptional and functional markers of astrocyte activation occurred via RIPK-dependent activation of NF-κB signaling. Our study identifies a previously unknown function for α-synuclein in promoting neurotoxic astrocyte activation, as well as new cell death-independent roles for RIP kinase signaling in the regulation of glial cell biology and neuroinflammation. Together, these findings highlight previously unappreciated molecular mechanisms of pathologic astrocyte activation and neuronal cell death with implications for Parkinsonian neurodegeneration.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , FN-kappa B/metabolismo , Neurotoxinas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , alfa-Sinucleína/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica , Homeostasis , Humanos , Mesencéfalo/citología , Necroptosis/genética , Fagocitosis , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
19.
Future Virol ; 12(11): 651-665, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29181086

RESUMEN

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus endemic to sub-Saharan Africa and the Arabian Peninsula and the etiological agent of Rift Valley fever. Rift Valley fever is a disease of major public health and economic concern, affecting livestock and humans. In ruminants, RVFV infection is characterized by high mortality rates in newborns and near 100% abortion rates in pregnant animals. Infection in humans is typically manifested as a self-limiting febrile illness, but can lead to severe and fatal hepatitis, encephalitis, hemorrhagic fever or retinitis with partial or complete blindness. Currently, there are no specific treatment options available for RVFV infection. This review presents a summary of the therapeutic approaches that have been explored on the treatment of RVFV infection.

20.
Antiviral Res ; 121: 31-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26116756

RESUMEN

Human respiratory syncytial virus (hRSV) is a highly contagious Paramyxovirus that infects most children by age two, generating an estimated 75,000-125,000 hospitalizations in the U.S. annually. hRSV is the most common cause of bronchiolitis and pneumonia among infants and children under 1year of age, with significant mortality among high-risk groups. A regulatory agency-approved vaccine is not available, and existing prophylaxis and therapies are limited to use in high-risk pediatric patients; thus additional therapies are sorely needed. Here, we identify a series of benzimidazole analogs that inhibit hRSV infection in vitro with high potency, using a previously-reported high-throughput screening assay. The lead compound, SRI 29365 (1-[6-(2-furyl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl]methyl-1H-benzimidazole), has an EC50 of 66µM and a selectivity >50. We identified additional compounds with varying potencies by testing commercially-available chemical analogs. Time-of-addition experiments indicated that SRI 29365 effectively inhibits viral replication only if present during the early stages of viral infection. We isolated a virus with resistance to SRI 29365 and identified mutations in the transmembrane domain of the viral G protein genomic sequence that suggested that the compound inhibits G-protein mediated attachment of hRSV to cells. Additional experiments with multiple cell types indicated that SRI 29365 antiviral activity correlates with the binding of cell surface heparin by full-length G protein. Lastly, SRI 29365 did not reduce hRSV titers or morbidity/mortality in efficacy studies using a cotton rat model. Although SRI 29365 and analogs inhibit hRSV replication in vitro, this work suggests that the G-protein may not be a valid drug target in vivo.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/fisiología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Acoplamiento Viral/efectos de los fármacos , Animales , Línea Celular , Modelos Animales de Enfermedad , Farmacorresistencia Viral , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/virología , Sigmodontinae , Análisis de Supervivencia , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA