Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neuroinflammation ; 20(1): 297, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087314

RESUMEN

Extracellular vesicles (EVs) released by human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs) are enriched with miRNAs and proteins capable of mediating robust antiinflammatory activity. The lack of tumorigenic and immunogenic properties and ability to permeate the entire brain to incorporate into microglia following intranasal (IN) administrations makes them an attractive biologic for curtailing chronic neuroinflammation in neurodegenerative disorders. We tested the hypothesis that IN administrations of hiPSC-NSC-EVs can alleviate chronic neuroinflammation and cognitive impairments induced by the peripheral lipopolysaccharide (LPS) challenge. Adult male, C57BL/6J mice received intraperitoneal injections of LPS (0.75 mg/kg) for seven consecutive days. Then, the mice received either vehicle (VEH) or hiPSC-NSC-EVs (~ 10 × 109 EVs/administration, thrice over 6 days). A month later, mice in all groups were investigated for cognitive function with behavioral tests and euthanized for histological and biochemical studies. Mice receiving VEH after LPS displayed deficits in associative recognition memory, temporal pattern processing, and pattern separation. Such impairments were associated with an increased incidence of activated microglia presenting NOD-, LRR-, and pyrin domain containing 3 (NLRP3) inflammasomes, elevated levels of NLRP3 inflammasome mediators and end products, and decreased neurogenesis in the hippocampus. In contrast, the various cognitive measures in mice receiving hiPSC-NSC-EVs after LPS were closer to naive mice. Significantly, these mice displayed diminished microglial activation, NLRP3 inflammasomes, proinflammatory cytokines, and a level of neurogenesis matching age-matched naïve controls. Thus, IN administrations of hiPSC-NSC-EVs are an efficacious approach to reducing chronic neuroinflammation-induced cognitive impairments.


Asunto(s)
Disfunción Cognitiva , Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Humanos , Ratones , Masculino , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Ratones Endogámicos NOD , Ratones Endogámicos C57BL , Inflamación/metabolismo , Vesículas Extracelulares/metabolismo , Microglía/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo , Células-Madre Neurales/metabolismo , Hipocampo/metabolismo , Neurogénesis
2.
Brain Behav Immun ; 108: 118-134, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427808

RESUMEN

Traumatic brain injury (TBI) leads to lasting brain dysfunction with chronic neuroinflammation typified by nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome activation in microglia. This study probed whether a single intranasal (IN) administration of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) naturally enriched with activated microglia-modulating miRNAs can avert chronic adverse outcomes of TBI. Small RNA sequencing confirmed the enrichment of miRNAs capable of modulating activated microglia in hMSC-EV cargo. IN administration of hMSC-EVs into adult mice ninety minutes after the induction of a unilateral controlled cortical impact injury resulted in their incorporation into neurons and microglia in both injured and contralateral hemispheres. A single higher dose hMSC-EV treatment also inhibited NLRP3 inflammasome activation after TBI, evidenced by reduced NLRP3, apoptosis-associated speck-like protein containing a CARD, activated caspase-1, interleukin-1 beta, and IL-18 levels in the injured brain. Such inhibition in the acute phase of TBI endured in the chronic phase, which could also be gleaned from diminished NLRP3 inflammasome activation in microglia of TBI mice receiving hMSC-EVs. Proteomic analysis and validation revealed that higher dose hMSC-EV treatment thwarted the chronic activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway by IL-18, which decreased the release of proinflammatory cytokines. Inhibition of the chronic activation of NLRP3-p38/MAPK signaling after TBI also prevented long-term cognitive and mood impairments. Notably, the animals receiving higher doses of hMSC-EVs after TBI displayed better cognitive and mood function in all behavioral tests than animals receiving the vehicle after TBI. A lower dose of hMSC-EV treatment also partially improved cognitive and mood function. Thus, an optimal IN dose of hMSC-EVs naturally enriched with activated microglia-modulating miRNAs can inhibit the chronic activation of NLRP3-p38/MAPK signaling after TBI and prevent lasting brain dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Vesículas Extracelulares , MicroARNs , Proteína Quinasa 14 Activada por Mitógenos , Animales , Humanos , Ratones , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Inflamasomas/metabolismo , Interleucina-18/metabolismo , MicroARNs/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteómica , Transducción de Señal , Células Madre Mesenquimatosas
3.
Proc Natl Acad Sci U S A ; 116(1): 287-296, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559206

RESUMEN

Medial ganglionic eminence (MGE)-like interneuron precursors derived from human induced pluripotent stem cells (hiPSCs) are ideal for developing patient-specific cell therapy in temporal lobe epilepsy (TLE). However, their efficacy for alleviating spontaneous recurrent seizures (SRS) or cognitive, memory, and mood impairments has never been tested in models of TLE. Through comprehensive video- electroencephalographic recordings and a battery of behavioral tests in a rat model, we demonstrate that grafting of hiPSC-derived MGE-like interneuron precursors into the hippocampus after status epilepticus (SE) greatly restrained SRS and alleviated cognitive, memory, and mood dysfunction in the chronic phase of TLE. Graft-derived cells survived well, extensively migrated into different subfields of the hippocampus, and differentiated into distinct subclasses of inhibitory interneurons expressing various calcium-binding proteins and neuropeptides. Moreover, grafting of hiPSC-MGE cells after SE mediated several neuroprotective and antiepileptogenic effects in the host hippocampus, as evidenced by reductions in host interneuron loss, abnormal neurogenesis, and aberrant mossy fiber sprouting in the dentate gyrus (DG). Furthermore, axons from graft-derived interneurons made synapses on the dendrites of host excitatory neurons in the DG and the CA1 subfield of the hippocampus, implying an excellent graft-host synaptic integration. Remarkably, seizure-suppressing effects of grafts were significantly reduced when the activity of graft-derived interneurons was silenced by a designer drug while using donor hiPSC-MGE cells expressing designer receptors exclusively activated by designer drugs (DREADDs). These results implied the direct involvement of graft-derived interneurons in seizure control likely through enhanced inhibitory synaptic transmission. Collectively, the results support a patient-specific MGE cell grafting approach for treating TLE.


Asunto(s)
Encéfalo/embriología , Epilepsia/cirugía , Hipocampo/cirugía , Células Madre Pluripotentes Inducidas/trasplante , Estado Epiléptico/cirugía , Afecto , Animales , Región CA1 Hipocampal/fisiología , Cognición , Giro Dentado/fisiología , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Masculino , Ratas , Ratas Endogámicas F344 , Convulsiones/cirugía , Sinapsis/fisiología
4.
Brain Behav Immun ; 97: 135-149, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245811

RESUMEN

Persistent cognitive and mood impairments in Gulf War Illness (GWI) are associated with chronic neuroinflammation, typified by hypertrophied astrocytes, activated microglia, and increased proinflammatory mediators in the brain. Using a rat model, we investigated whether a simple lifestyle change such as moderate voluntary physical exercise would improve cognitive and mood function in GWI. Because veterans with GWI exhibit fatigue and post-exertional malaise, we employed an intermittent voluntary running exercise (RE) regimen, which prevented exercise-induced stress. The GWI rats were provided access to running wheels three days per week for 13 weeks, commencing ten weeks after the exposure to GWI-related chemicals and stress (GWI-RE group). Groups of age-matched sedentary GWI rats (GWI-SED group) and naïve rats were maintained parallelly. Interrogation of rats with behavioral tests after the 13-week RE regimen revealed improved hippocampus-dependent object location memory and pattern separation function and reduced anxiety-like behavior in the GWI-RE group compared to the GWI-SED group. Moreover, 13 weeks of RE in GWI rats significantly reversed activated microglia with short and less ramified processes into non-inflammatory/antiinflammatory microglia with highly ramified processes and reduced the hypertrophy of astrocytes. Moreover, the production of new neurons in the hippocampus was enhanced when examined eight weeks after the commencement of RE. Notably, increased neurogenesis continued even after the cessation of RE. Collectively, the results suggest that even a moderate, intermittent physical exercise has the promise to improve brain function in veterans with GWI in association with suppression of neuroinflammation and enhancement of hippocampal neurogenesis.


Asunto(s)
Síndrome del Golfo Pérsico , Animales , Astrocitos , Cognición , Hipocampo , Microglía , Neurogénesis , Ratas
5.
Neurobiol Dis ; 121: 163-176, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30290271

RESUMEN

The association of WW domain-containing oxidoreductase WWOX gene loss of function with central nervous system (CNS) related pathologies is well documented. These include spinocerebellar ataxia, epilepsy and mental retardation (SCAR12, OMIM: 614322) and early infantile epileptic encephalopathy (EIEE28, OMIM: 616211) syndromes. However, there is complete lack of understanding of the pathophysiological mechanisms at play. In this study, using a Wwox knockout (Wwox KO) mouse model (2 weeks old, both sexes) and stereological studies we observe that Wwox deletion leads to a significant reduction in the number of hippocampal GABA-ergic (γ-aminobutyric acid) interneurons. Wwox KO mice displayed significantly reduced numbers of calcium-binding protein parvalbumin (PV) and neuropeptide Y (NPY) expressing interneurons in different subfields of the hippocampus in comparison to Wwox wild-type (WT) mice. We also detected decreased levels of Glutamic Acid Decarboxylase protein isoforms GAD65/67 expression in Wwox null hippocampi suggesting lower levels of GABA synthesis. In addition, Wwox deficiency was associated with signs of neuroinflammation such as evidence of activated microglia, astrogliosis, and overexpression of inflammatory cytokines Tnf-a and Il6. We also performed comparative transcriptome-wide expression analyses of neural stem cells grown as neurospheres from hippocampi of Wwox KO and WT mice thus identifying 283 genes significantly dysregulated in their expression. Functional annotation of transcriptome profiling differences identified 'neurological disease' and 'CNS development related functions' to be significantly enriched. Several epilepsy-related genes were found differentially expressed in Wwox KO neurospheres. This study provides the first genotype-phenotype observations as well as potential mechanistic clues associated with Wwox loss of function in the brain.


Asunto(s)
Astrocitos/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Microglía/metabolismo , Oxidorreductasa que Contiene Dominios WW/metabolismo , Animales , Encefalitis/genética , Femenino , Gliosis/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratones Noqueados , Células-Madre Neurales/metabolismo , Transcriptoma , Oxidorreductasa que Contiene Dominios WW/genética
6.
Brain Behav Immun ; 81: 430-443, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31255677

RESUMEN

Cognitive dysfunction and neuroinflammation are conspicuously observed in Gulf War Illness (GWI). We investigated whether brain inflammation in GWI is associated with activation of high mobility group box-1 (HMGB1) and complement-related proteins in neurons and astrocytes, and brain inflammation can be tracked through neuron-derived extracellular vesicles (NDEVs) and astrocyte-derived EVs (ADEVs) found in the circulating blood. We exposed animals to GWI-related chemicals pyridostigmine bromide, DEET and permethrin, and moderate stress for 28 days. We performed behavioral tests 10 months post-exposure and quantified activated microglia and reactive astrocytes in the cerebral cortex. Then, we measured the concentration of HMGB1, proinflammatory cytokines, and complement activation-related proteins in the cerebral cortex, and NDEVs and ADEVs in the circulating blood. Cognitive impairments persisted in GWI rats at 10 months post-exposure, which were associated with increased density of activated microglia and reactive astrocytes in the cerebral cortex. Moreover, the level of HMGB1 was elevated in the cerebral cortex with altered expression in the cytoplasm of neuronal soma and dendrites as well as the extracellular space. Also, higher levels of proinflammatory cytokines (TNFa, IL-1b, and IL-6), and complement activation-related proteins (C3 and TccC5b-9) were seen in the cerebral cortex. Remarkably, increased levels of HMGB1 and proinflammatory cytokines observed in the cerebral cortex of GWI rats could also be found in NDEVs isolated from the blood. Similarly, elevated levels of complement proteins seen in the cerebral cortex could be found in ADEVs. The results provide new evidence that persistent cognitive dysfunction and chronic neuroinflammation in a model of GWI are linked with elevated HMGB1 concentration and complement activation. Furthermore, the results demonstrated that multiple biomarkers of neuroinflammation could be tracked reliably via analyses of NDEVs and ADEVs in the circulating blood. Execution of such a liquid biopsy approach is especially useful in clinical trials for monitoring the remission, persistence or progression of brain inflammation in GWI patients with drug treatment.


Asunto(s)
Activación de Complemento/inmunología , Encefalitis/inmunología , Proteína HMGB1/inmunología , Síndrome del Golfo Pérsico/inmunología , Animales , Astrocitos/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Citocinas/metabolismo , DEET/farmacología , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Guerra del Golfo , Inflamación/inmunología , Masculino , Neuroinmunomodulación/inmunología , Neuronas/metabolismo , Permetrina/farmacología , Bromuro de Piridostigmina/farmacología , Ratas
7.
Int J Mol Sci ; 21(1)2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31888012

RESUMEN

Extracellular vesicles (EVs) derived from human bone marrow mesenchymal stem cells (hMSCs) have great promise as biologics to treat neurological and neurodegenerative conditions due to their robust antiinflammatory and neuroprotective properties. Besides, intranasal (IN) administration of EVs has caught much attention because the procedure is noninvasive, amenable for repetitive dispensation, and leads to a quick penetration of EVs into multiple regions of the forebrain. Nonetheless, it is unknown whether brain injury-induced signals are essential for the entry of IN-administered EVs into different brain regions. Therefore, in this study, we investigated the distribution of IN-administered hMSC-derived EVs into neurons and microglia in the intact and status epilepticus (SE) injured rat forebrain. Ten billion EVs labeled with PKH26 were dispensed unilaterally into the left nostril of naïve rats, and rats that experienced two hours of kainate-induced SE. Six hours later, PKH26 + EVs were quantified from multiple forebrain regions using serial brain sections processed for different neural cell markers and confocal microscopy. Remarkably, EVs were seen bilaterally in virtually all regions of intact and SE-injured forebrain. The percentage of neurons incorporating EVs were comparable for most forebrain regions. However, in animals that underwent SE, a higher percentage of neurons incorporated EVs in the hippocampal CA1 subfield and the entorhinal cortex, the regions that typically display neurodegeneration after SE. In contrast, the incorporation of EVs by microglia was highly comparable in every region of the forebrain measured. Thus, unilateral IN administration of EVs is efficient for delivering EVs bilaterally into neurons and microglia in multiple regions in the intact or injured forebrain. Furthermore, incorporation of EVs by neurons is higher in areas of brain injury, implying that injury-related signals likely play a role in targeting of EVs into neurons, which may be beneficial for EV therapy in various neurodegenerative conditions including traumatic brain injury, stroke, multiple sclerosis, and Alzheimer's disease.


Asunto(s)
Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/citología , Prosencéfalo/citología , Estado Epiléptico/terapia , Administración Intranasal , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Vesículas Extracelulares/química , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Compuestos Orgánicos/farmacología , Prosencéfalo/metabolismo , Ratas , Estado Epiléptico/metabolismo , Resultado del Tratamiento
8.
bioRxiv ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38293018

RESUMEN

Antiinflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for Alzheimer's disease (AD). This study directly addressed this issue by examining the effects of intranasal administrations of hiPSC-NSC-EVs to 3-month-old 5xFAD mice. The EVs were internalized by all microglia, which led to reduced expression of multiple genes associated with disease-associated microglia, inflammasome, and interferon-1 signaling. Furthermore, the effects of hiPSC-NSC-EVs persisted for two months post-treatment in the hippocampus, evident from reduced microglial clusters, inflammasome complexes, and expression of proteins and/or genes linked to the activation of inflammasomes, p38/mitogen-activated protein kinase, and interferon-1 signaling. The amyloid-beta (Aß) plaques, Aß-42, and phosphorylated-tau concentrations were also diminished, leading to better cognitive and mood function in 5xFAD mice. Thus, early intervention with hiPSC-NSC-EVs in AD may help maintain better brain function by restraining the progression of adverse neuroinflammatory signaling cascades.

9.
Front Mol Neurosci ; 16: 1185883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284464

RESUMEN

An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.

10.
Front Aging Neurosci ; 15: 1200445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424631

RESUMEN

Introduction: Extracellular vesicles (EVs) released by human-induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) have robust antiinflammatory and neurogenic properties due to therapeutic miRNAs and proteins in their cargo. Hence, hiPSC-NSC-EVs are potentially an excellent biologic for treating neurodegenerative disorders, including Alzheimer's disease (AD). Methods: This study investigated whether intranasally (IN) administered hiPSC-NSC-EVs would quickly target various neural cell types in the forebrain, midbrain, and hindbrain regions of 3-month-old 5xFAD mice, a model of ß-amyloidosis and familial AD. We administered a single dose of 25 × 109 hiPSC-NSC-EVs labeled with PKH26, and different cohorts of naïve and 5xFAD mice receiving EVs were euthanized at 45 min or 6 h post-administration. Results: At 45 min post-administration, EVs were found in virtually all subregions of the forebrain, midbrain, and hindbrain of naïve and 5xFAD mice, with predominant targeting and internalization into neurons, interneurons, and microglia, including plaque-associated microglia in 5xFAD mice. EVs also came in contact with the plasma membranes of astrocytic processes and the soma of oligodendrocytes in white matter regions. Evaluation of CD63/CD81 expression with the neuronal marker confirmed that PKH26 + particles found within neurons were IN administered hiPSC-NSC-EVs. At 6 h post-administration, EVs persisted in all cell types in both groups, with the distribution mostly matching what was observed at 45 min post-administration. Area fraction (AF) analysis revealed that, in both naïve and 5xFAD mice, higher fractions of EVs incorporate into forebrain regions at both time points. However, at 45 min post-IN administration, AFs of EVs within cell layers in forebrain regions and within microglia in midbrain and hindbrain regions were lower in 5xFAD mice than naïve mice, implying that amyloidosis reduces EV penetrance. Discussion: Collectively, the results provide novel evidence that IN administration of therapeutic hiPSC-NSC-EVs is an efficient avenue for directing such EVs into neurons and glia in all brain regions in the early stage of amyloidosis. As pathological changes in AD are observed in multiple brain areas, the ability to deliver therapeutic EVs into various neural cells in virtually every brain region in the early stage of amyloidosis is attractive for promoting neuroprotective and antiinflammatory effects.

11.
Front Immunol ; 13: 853000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572589

RESUMEN

Persistent cognitive impairment is a primary central nervous system-related symptom in veterans afflicted with chronic Gulf War Illness (GWI). Previous studies in a rat model have revealed that cognitive dysfunction in chronic GWI is associated with neuroinflammation, typified by astrocyte hypertrophy, activated microglia, and enhanced proinflammatory cytokine levels. Studies in a mouse model of GWI have also shown upregulation of several phospholipids that serve as reservoirs of arachidonic acid, a precursor of leukotrienes (LTs). However, it is unknown whether altered LT signaling is a component of chronic neuroinflammatory conditions in GWI. Therefore, this study investigated changes in LT signaling in the brain of rats displaying significant cognitive impairments six months after exposure to GWI-related chemicals and moderate stress. The concentration of cysteinyl LTs (CysLTs), LTB4, and 5-Lipoxygenase (5-LOX), the synthesizing enzyme of LTs, were evaluated. CysLT and LTB4 concentrations were elevated in the hippocampus and the cerebral cortex, along with enhanced 5-LOX expression in neurons and microglia. Such changes were also associated with increased proinflammatory cytokine levels in the hippocampus and the cerebral cortex. Enhanced CysLT and LTB4 levels in the brain could also be gleaned from their concentrations in brain-derived extracellular vesicles in the circulating blood. The circulating blood in GWI rats displayed elevated proinflammatory cytokines with no alterations in CysLT and LTB4 concentrations. The results provide new evidence that a brain-specific increase in LT signaling is another adverse alteration that potentially contributes to the maintenance of chronic neuroinflammation in GWI. Therefore, drugs capable of modulating LT signaling may reduce neuroinflammation and improve cognitive function in GWI. Additional findings demonstrate that altered LT levels in the brain could be tracked efficiently by analyzing brain-derived EVs in the circulating blood.


Asunto(s)
Disfunción Cognitiva , Síndrome del Golfo Pérsico , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Citocinas/metabolismo , Leucotrieno B4/metabolismo , Leucotrienos/metabolismo , Ratones , Enfermedades Neuroinflamatorias , Síndrome del Golfo Pérsico/metabolismo , Síndrome del Golfo Pérsico/psicología , Ratas
12.
NPJ Regen Med ; 7(1): 38, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915118

RESUMEN

Interneuron loss/dysfunction contributes to spontaneous recurrent seizures (SRS) in chronic temporal lobe epilepsy (TLE), and interneuron grafting into the epileptic hippocampus reduces SRS and improves cognitive function. This study investigated whether graft-derived gamma-aminobutyric acid positive (GABA-ergic) interneurons directly regulate SRS and cognitive function in a rat model of chronic TLE. Human pluripotent stem cell-derived medial ganglionic eminence-like GABA-ergic progenitors, engineered to express hM4D(Gi), a designer receptor exclusively activated by designer drugs (DREADDs) through CRISPR/Cas9 technology, were grafted into hippocampi of chronically epileptic rats to facilitate the subsequent silencing of graft-derived interneurons. Such grafting substantially reduced SRS and improved hippocampus-dependent cognitive function. Remarkably, silencing of graft-derived interneurons with a designer drug increased SRS and induced location memory impairment but did not affect pattern separation function. Deactivation of DREADDs restored both SRS control and object location memory function. Thus, transplanted GABA-ergic interneurons could directly regulate SRS and specific cognitive functions in TLE.

13.
Aging Dis ; 13(2): 583-613, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35371600

RESUMEN

Unrelenting cognitive and mood impairments concomitant with incessant oxidative stress and neuroinflammation are among the significant symptoms of chronic Gulf War Illness (GWI). Curcumin (CUR), an antiinflammatory compound, has shown promise to alleviate brain dysfunction in a model of GWI following intraperitoneal administrations at a high dose. However, low bioavailability after oral treatment has hampered its clinical translation. Therefore, this study investigated the efficacy of low-dose, intermittent, oral polymer nanoparticle encapsulated CUR (nCUR) for improving brain function in a rat model of chronic GWI. Intermittent administration of 10 or 20 mg/Kg nCUR for 8 weeks in the early phase of GWI improved brain function and reduced oxidative stress (OS) and neuroinflammation. We next examined the efficacy of 12-weeks of intermittent nCUR at 10 mg/Kg in GWI animals, with treatment commencing 8 months after exposure to GWI-related chemicals and stress, mimicking treatment for the persistent cognitive and mood dysfunction displayed by veterans with GWI. GWI rats receiving nCUR exhibited better cognitive and mood function associated with improved mitochondrial function and diminished neuroinflammation in the hippocampus. Improved mitochondrial function was evident from normalized expression of OS markers, antioxidants, and mitochondrial electron transport genes, and complex proteins. Lessened neuroinflammation was noticeable from reductions in astrocyte hypertrophy, NF-kB, activated microglia with NLRP3 inflammasomes, and multiple proinflammatory cytokines. Moreover, nCUR treated animals displayed enhanced neurogenesis with a normalized expression of synaptophysin puncta, and multiple genes linked to cognitive dysfunction. Thus, low-dose, intermittent, oral nCUR therapy has promise for improving brain function in veterans with GWI.

14.
Aging Cell ; 20(2): e13277, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33443781

RESUMEN

Metformin, a drug widely used for treating diabetes, can prolong the lifespan in several species. Metformin also has the promise to slow down age-related cognitive impairment. However, metformin's therapeutic use as an anti-aging drug is yet to be accepted because of conflicting animal and human studies results. We examined the effects of metformin treatment in late middle age on cognitive function in old age. Eighteen-month-old male C57BL6/J mice received metformin or no treatment for 10 weeks. A series of behavioral tests revealed improved cognitive function in animals that received metformin. Such findings were evident from a better ability for pattern separation, object location, and recognition memory function. Quantification of microglia revealed that metformin treatment reduced the incidence of pathological microglial clusters with alternative activation of microglia into an M2 phenotype, displaying highly ramified processes in the hippocampus. Metformin treatment also seemed to reduce astrocyte hypertrophy. Additional analysis demonstrated that metformin treatment in late middle age increased adenosine monophosphate-activated protein kinase activation, reduced proinflammatory cytokine levels, and the mammalian target of rapamycin signaling, and enhanced autophagy in the hippocampus. However, metformin treatment did not alter neurogenesis or synapses in the hippocampus, implying that improved cognitive function with metformin did not involve enhanced neurogenesis or neosynaptogenesis. The results provide new evidence that metformin treatment commencing in late middle age has promise for improving cognitive function in old age. Modulation of microglia, proinflammatory cytokines, and autophagy appear to be the mechanisms by which metformin facilitated functional benefits in the aged brain.


Asunto(s)
Envejecimiento/efectos de los fármacos , Autofagia/efectos de los fármacos , Cognición/efectos de los fármacos , Hipocampo/efectos de los fármacos , Metformina/farmacología , Microglía/efectos de los fármacos , Animales , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo
15.
Redox Biol ; 43: 101973, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933884

RESUMEN

Persistent cognitive and mood dysfunction is the primary CNS symptom in veterans afflicted with Gulf War Illness (GWI). This study investigated the efficacy of melatonin (MEL) for improving cognitive and mood function with antioxidant, antiinflammatory, and pro-cognitive effects in a rat model of chronic GWI. Six months after exposure to GWI-related chemicals and stress, rats were treated with vehicle or MEL (5, 10, 20, 40, and 80 mg/kg) for eight weeks. Behavioral tests revealed cognitive and mood dysfunction in GWI rats receiving vehicle, which were associated with elevated oxidative stress, reduced NRF2, catalase and mitochondrial complex proteins, astrocyte hypertrophy, activated microglia with NLRP3 inflammasomes, elevated proinflammatory cytokines, waned neurogenesis, and synapse loss in the hippocampus. MEL at 10 mg/kg alleviated simple and associative recognition memory dysfunction and anhedonia, along with reduced oxidative stress, enhanced glutathione and complex III, and reduced NLRP3 inflammasomes, IL-18, TNF-α, and IFN-γ. MEL at 20 mg/kg also normalized NRF2 and catalase and increased microglial ramification. MEL at 40 mg/kg, in addition, reduced astrocyte hypertrophy, activated microglia, NF-kB-NLRP3-caspase-1 signaling, IL-1ß, MCP-1, and MIP-1α. Moreover, MEL at 80 mg/kg activated the BDNF-ERK-CREB signaling pathway, enhanced neurogenesis and diminished synapse loss in the hippocampus, and improved a more complex hippocampus-dependent cognitive function. Thus, MEL therapy is efficacious for improving cognitive and mood function in a rat model of chronic GWI, and MEL's effect was dose-dependent. The study provides the first evidence of MEL's promise for alleviating neuroinflammation and cognitive and mood impairments in veterans with chronic GWI.


Asunto(s)
Melatonina , Síndrome del Golfo Pérsico , Animales , Factor Neurotrófico Derivado del Encéfalo , Hipocampo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Ratas
16.
J Extracell Vesicles ; 9(1): 1809064, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32944193

RESUMEN

Grafting of neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise for brain repair after injury or disease, but safety issues have hindered their clinical application. Employing nano-sized extracellular vesicles (EVs) derived from hiPSC-NSCs appears to be a safer alternative because they likely have similar neuroreparative properties as NSCs and are amenable for non-invasive administration as an autologous or allogeneic off-the-shelf product. However, reliable methods for isolation, characterization and testing the biological properties of EVs are critically needed for translation. We investigated signatures of miRNAs and proteins and the biological activity of EVs, isolated from hiPSC-NSCs through a combination of anion-exchange chromatography (AEC) and size-exclusion chromatography (SEC). AEC and SEC facilitated the isolation of EVs with intact ultrastructure and expressing CD9, CD63, CD81, ALIX and TSG 101. Small RNA sequencing, proteomic analysis, pathway analysis and validation of select miRNAs and proteins revealed that EVs were enriched with miRNAs and proteins involved in neuroprotective, anti-apoptotic, antioxidant, anti-inflammatory, blood-brain barrier repairing, neurogenic and Aß reducing activities. Besides, EVs comprised miRNAs and/or proteins capable of promoting synaptogenesis, synaptic plasticity and better cognitive function. Investigations using an in vitro macrophage assay and a mouse model of status epilepticus confirmed the anti-inflammatory activity of EVs. Furthermore, the intranasal administration of EVs resulted in the incorporation of EVs by neurons, microglia and astrocytes in virtually all adult rat and mouse brain regions, and enhancement of hippocampal neurogenesis. Thus, biologically active EVs containing miRNAs and proteins relevant to brain repair could be isolated from hiPSC-NSC cultures, making them a suitable biologic for treating neurodegenerative disorders.

17.
Redox Biol ; 28: 101389, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778892

RESUMEN

Enduring brain dysfunction is amid the highly manifested symptoms in veterans with Gulf War Illness (GWI). Animal studies have established that lasting brain dysfunction in GWI is concomitant with augmented oxidative stress, inflammation, and declined neurogenesis in the brain, and systemic inflammation. We hypothesize that drugs capable of restoring redox homeostasis in GWI will improve cognitive and mood function with modulation of neuroinflammation and neurogenesis. We examined the efficacy of monosodium luminol-GVT (MSL), a drug that promotes redox homeostasis, for improving cognitive and mood function in GWI rats. Young rats were exposed to GWI-related chemicals and moderate restraint stress for four weeks. Four months later, GWI rats received different doses of MSL or vehicle for eight weeks. Behavioral analyses in the last three weeks of treatment revealed that GWI rats receiving higher doses of MSL displayed better cognitive and mood function associated with reinstatement of redox homeostasis. Such restoration was evident from the normalized expression of multiple genes encoding proteins involved in combating oxidative stress in the brain and the return of several oxidative stress markers to control levels in the brain and the circulating blood. Sustained redox homeostasis by MSL also resulted in antiinflammatory and pro-neurogenic effects, which were apparent from reduced densities of hypertrophied astrocytes and activated microglia, and increased neurogenesis with augmented neural stem cell proliferation. Moreover, MSL treatment normalized the concentration of multiple proinflammatory markers in the circulating blood. Thus, MSL treatment reinstated redox homeostasis in an animal model of GWI, which resulted in alleviation of both brain and systemic inflammation, improved neurogenesis, and better cognitive and mood function.


Asunto(s)
Neurogénesis/efectos de los fármacos , Síndrome del Golfo Pérsico/tratamiento farmacológico , Síndrome del Golfo Pérsico/psicología , Piridazinas/administración & dosificación , Afecto/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Guerra del Golfo , Homeostasis/efectos de los fármacos , Masculino , Estrés Oxidativo , Síndrome del Golfo Pérsico/metabolismo , Piridazinas/farmacología , Ratas
18.
Neurosci Biobehav Rev ; 98: 122-134, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30629979

RESUMEN

Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/fisiopatología , Convulsiones/fisiopatología , Lóbulo Temporal/fisiopatología , Animales , Anticonvulsivantes/uso terapéutico , Ritmo Circadiano/efectos de los fármacos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Humanos , Convulsiones/tratamiento farmacológico
19.
Aging Dis ; 10(5): 915-936, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31595192

RESUMEN

Many animal prototypes illustrating the various attributes of human temporal lobe epilepsy (TLE) are available. These models have been invaluable for comprehending multiple epileptogenic processes, modifications in electrophysiological properties, neuronal hyperexcitability, neurodegeneration, neural plasticity, and chronic neuroinflammation in TLE. Some models have also uncovered the efficacy of new antiepileptic drugs or biologics for alleviating epileptogenesis, cognitive impairments, or spontaneous recurrent seizures (SRS). Nonetheless, the suitability of these models for testing candidate therapeutics in conditions such as chronic TLE is debatable because of a lower frequency of SRS and an inconsistent pattern of SRS activity over days, weeks or months. An ideal prototype of chronic TLE for investigating novel therapeutics would need to display a large number of SRS with a dependable frequency and severity and related co-morbidities. This study presents a new kainic acid (KA) model of chronic TLE generated through induction of status epilepticus (SE) in 6-8 weeks old male F344 rats. A rigorous characterization in the chronic epilepsy period validated that the animal prototype mimicked the most salient features of robust chronic TLE. Animals displayed a constant frequency and intensity of SRS across weeks and months in the 5th and 6th month after SE, as well as cognitive and mood impairments. Moreover, SRS frequency displayed a rhythmic pattern with 24-hour periodicity and a consistently higher number of SRS in the daylight period. Besides, the model showed many neuropathological features of chronic TLE, which include a partial loss of inhibitory interneurons, reduced neurogenesis with persistent aberrant migration of newly born neurons, chronic neuroinflammation typified by hypertrophied astrocytes and rod-shaped microglia, and a significant aberrant mossy fiber sprouting in the hippocampus. This consistent chronic seizure model is ideal for investigating the efficacy of various antiepileptic drugs and biologics as well as understanding multiple pathophysiological mechanisms underlying chronic epilepsy.

20.
Front Mol Neurosci ; 10: 182, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659758

RESUMEN

Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73-88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines (Tnfa, IL1b, IL1a, Tgfb, and Fgf2) and lipid peroxidation byproduct malondialdehyde in the serum, suggesting the presence of an incessant systemic inflammation and elevated oxidative stress. These results imply that chronic oxidative stress, inflammation, and mitochondrial dysfunction in the hippocampus, and heightened systemic inflammation and oxidative stress likely underlie the persistent memory and mood dysfunction observed in GWI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA