Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Pulm Med ; 24(1): 186, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632546

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder with systemic consequences that can cause a muscle loss phenotype (MLP), which is characterized by the loss of muscle mass, muscle strength, or loss of both muscle and fat mass. There are limited data comparing the individual traits of MLP with clinical outcomes in a large unbiased cohort of COPD patients. Our aim was to determine the proportion of patients who met criteria for MLP in an unbiased sample of COPD patients at the population-level. We also determined if specific MLP features were associated with all-cause and COPD-related mortality. METHODS: A retrospective population-based cohort analysis of the UK Biobank was performed. COPD was defined by a FEV1/FVC ratio < 0.7, physician established diagnosis of COPD, or those with a COPD-related hospitalization before baseline assessment. MLP included one or more of the following: 1) Low fat-free mass index (FFMI) on bioelectric impedance analysis (BIA) or 2) Appendicular skeletal muscle index (ASMI) on BIA, 3) Low muscle strength defined by handgrip strength (HGS), or 4) Low muscle and fat mass based on body mass index (BMI). Cox regression was used to determine the association between MLP and all-cause or COPD-related mortality. All models were adjusted for sex, age at assessment, ethnicity, BMI, alcohol use, smoking status, prior cancer diagnosis and FEV1/FVC ratio. RESULTS: There were 55,782 subjects (56% male) with COPD followed for a median of 70.1 months with a mean(± SD) age at assessment of 59 ± 7.5 years, and FEV1% of 79.2 ± 18.5. Most subjects had mild (50.4%) or moderate (42.8%) COPD. Many patients had evidence of a MLP, which was present in 53.4% of COPD patients (34% by ASMI, 26% by HGS). Of the 5,608 deaths in patients diagnosed with COPD, 907 were COPD-related. After multivariate adjustment, COPD subjects with MLP had a 30% higher hazard-ratio for all-cause death and 70% higher hazard-ratio for COPD-related death. CONCLUSIONS: Evidence of MLP is common in a large population-based cohort of COPD and is associated with higher risk for all-cause and COPD-related mortality.


Asunto(s)
Fuerza de la Mano , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Masculino , Femenino , Estudios Retrospectivos , Biobanco del Reino Unido , Bancos de Muestras Biológicas , Músculo Esquelético , Fenotipo
2.
J Physiol ; 601(3): 567-606, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36533558

RESUMEN

Nocturnal hypoxaemia, which is common in chronic obstructive pulmonary disease (COPD) patients, is associated with skeletal muscle loss or sarcopenia, which contributes to adverse clinical outcomes. In COPD, we have defined this as prolonged intermittent hypoxia (PIH) because the duration of hypoxia in skeletal muscle occurs through the duration of sleep followed by normoxia during the day, in contrast to recurrent brief hypoxic episodes during obstructive sleep apnoea (OSA). Adaptive cellular responses to PIH are not known. Responses to PIH induced by three cycles of 8 h hypoxia followed by 16 h normoxia were compared to those during chronic hypoxia (CH) or normoxia for 72 h in murine C2C12 and human inducible pluripotent stem cell-derived differentiated myotubes. RNA sequencing followed by downstream analyses were complemented by experimental validation of responses that included both unique and shared perturbations in ribosomal and mitochondrial function during PIH and CH. A sarcopenic phenotype characterized by decreased myotube diameter and protein synthesis, and increased phosphorylation of eIF2α (Ser51) by eIF2α kinase, and of GCN-2 (general controlled non-derepressed-2), occurred during both PIH and CH. Mitochondrial oxidative dysfunction, disrupted supercomplex assembly, lower activity of Complexes I, III, IV and V, and reduced intermediary metabolite concentrations occurred during PIH and CH. Decreased mitochondrial fission occurred during CH. Physiological relevance was established in skeletal muscle of mice with COPD that had increased phosphorylation of eIF2α, lower protein synthesis and mitochondrial oxidative dysfunction. Molecular and metabolic responses with PIH suggest an adaptive exhaustion with failure to restore homeostasis during normoxia. KEY POINTS: Sarcopenia or skeletal muscle loss is one of the most frequent complications that contributes to mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). Unlike chronic hypoxia, prolonged intermittent hypoxia is a frequent, underappreciated and clinically relevant model of hypoxia in patients with COPD. We developed a novel, in vitro myotube model of prolonged intermittent hypoxia with molecular and metabolic perturbations, mitochondrial oxidative dysfunction, and consequent sarcopenic phenotype. In vivo studies in skeletal muscle from a mouse model of COPD shared responses with our myotube model, establishing the pathophysiological relevance of our studies. These data lay the foundation for translational studies in human COPD to target prolonged, nocturnal hypoxaemia to prevent sarcopenia in these patients.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Sarcopenia , Humanos , Ratones , Animales , Sarcopenia/metabolismo , Proteostasis , Músculo Esquelético/metabolismo , Hipoxia/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
3.
Glycobiology ; 33(11): 873-878, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-37812446

RESUMEN

Sarcopenia, defined as the loss of muscle mass and strength, is a major cause of morbidity and mortality in COPD (chronic obstructive pulmonary disease) patients. However, the molecular mechanisms that cause sarcopenia remain to be determined. In this review, we will highlight the unique molecular and metabolic perturbations that occur in the skeletal muscle of COPD patients in response to hypoxia, and emphasize important areas of future research. In particular, the mechanisms related to the glycolytic shift that occurs in skeletal muscle in response to hypoxia may occur via a hypoxia-inducible factor 1-alpha (HIF-1α)-mediated mechanism. Upregulated glycolysis in skeletal muscle promotes a unique post-translational glycosylation of proteins known as O-GlcNAcylation, which further shifts metabolism toward glycolysis. Molecular changes in the skeletal muscle of COPD patients are associated with fiber-type shifting from Type I (oxidative) muscle fibers to Type II (glycolytic) muscle fibers. The metabolic shift toward glycolysis caused by HIF-1α and O-GlcNAc modified proteins suggests a potential cause for sarcopenia in COPD, which is an emerging area of future research.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Sarcopenia , Humanos , Sarcopenia/metabolismo , Músculo Esquelético/metabolismo , Hipoxia/metabolismo , Procesamiento Proteico-Postraduccional , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
4.
J Biol Chem ; 297(3): 101023, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343564

RESUMEN

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Asunto(s)
Genómica , Hiperamonemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteómica , Transcriptoma , Animales , Citometría de Flujo , Humanos , Hiperamonemia/genética , Immunoblotting/métodos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
5.
Cell Physiol Biochem ; 55(1): 91-116, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33543862

RESUMEN

BACKGROUND/AIMS: Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS: Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS: Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are ß-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by ß-hydroxymethyl-butyrate treatment. CONCLUSION: An innovative multiomics approach followed by experimental validation showed that ß-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.


Asunto(s)
Etanol/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Hidroxibutiratos/farmacología , Hepatopatías Alcohólicas , Deficiencias en la Proteostasis , Sarcopenia , Transducción de Señal/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Etanol/farmacología , Femenino , Genómica , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Deficiencias en la Proteostasis/dietoterapia , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Sarcopenia/tratamiento farmacológico , Sarcopenia/etiología , Sarcopenia/metabolismo , Sarcopenia/patología
6.
Respirology ; 26(1): 62-71, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32542761

RESUMEN

BACKGROUND AND OBJECTIVE: COPD is the third most common cause of death worldwide and fourth most common in the United States. In hospitalized patients with COPD, mortality, morbidity and healthcare resource utilization are high. Skeletal muscle loss is frequent in patients with COPD. However, the impact of muscle loss on adverse outcomes has not been systematically evaluated. We tested the hypothesis that patients hospitalized for COPD exacerbation with, compared to those without, a secondary diagnosis of muscle loss phenotype (all ICD-9 codes associated with muscle loss including cachexia) will have higher mortality and cost of care. METHODS: The NIS database of hospitalized patients in 2011 (1 January-31 December) in the United States was used. The impact of a muscle loss phenotype on in-hospital mortality, LOS and cost of care for each of the 174 808 hospitalizations for COPD exacerbations was analysed. RESULTS: Of the subjects admitted for a COPD exacerbation, 12 977 (7.4%) had a secondary diagnosis of muscle loss phenotype. A diagnosis of muscle loss phenotype was associated with significantly higher in-hospital mortality (14.6% vs 5.7%, P < 0.001), LOS (13.3 + 17.1 vs 5.7 + 7.6, P < 0.001) and median hospital charge per patient ($13 947 vs $6610, P < 0.001). Multivariate regression analysis showed that muscle loss phenotype increased mortality by 111% (95% CI: 2.0-2.2, P < 0.001), LOS by 68.4% (P < 0.001) and the direct cost of care by 83.7% (P < 0.001) compared to those without muscle loss. CONCLUSION: In-hospital mortality, LOS and healthcare costs are higher in patients with COPD exacerbations and a muscle loss phenotype.


Asunto(s)
Músculos/patología , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Anciano , Progresión de la Enfermedad , Femenino , Costos de la Atención en Salud , Hospitalización , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Morbilidad , Análisis Multivariante , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/economía , Factores de Riesgo , Estados Unidos/epidemiología
7.
COPD ; 18(2): 191-200, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33736550

RESUMEN

Patients with advanced chronic obstructive pulmonary disease (COPD) develop skeletal muscle loss (sarcopenia) that is associated with adverse clinical outcomes including mortality. We evaluated if thoracic muscle area is associated with clinical outcomes in patients with severe COPD. We analyzed consecutive patients with severe COPD undergoing evaluation for lung volume reduction from 2015 to 2019 (n = 117) compared to current and former smoking controls undergoing lung cancer screening with normal lung function (n = 41). Quantitative assessments of pectoralis muscle (PM) and erector spinae muscle (ESM) cross sectional area (CSA) were related to clinical outcomes including composite endpoints. Our results showed a reduction in PM CSA but not ESM CSA was associated with the severity of GOLD stage of COPD. Current smokers demonstrated reduced PM CSA which was similar to that in COPD patients who were GOLD stages 3 and 4. PM CSA was associated positively with FEV1, FEV1% predicted, FVC, DLCO, and FEV1/FVC ratio, and was associated negatively with the degree of radiologic emphysema. ESM correlated positively with DLCO, RV/TLC (a marker of hyperinflation), and correlated negatively with radiologic severity of emphysema. Kaplan-Meier analysis showed that reductions in PM but not ESM CSA was associated with the composite end point of mortality, need for lung volume reduction, or lung transplant. In conclusion, in well-characterized patients with severe COPD referred for lung volume reduction, PM CSA correlated with severity of lung disease, mortality, and need for advanced therapies. In addition to predicting clinical outcomes, targeting sarcopenia is a potential therapeutic approach in patients with severe COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Detección Precoz del Cáncer , Enfisema , Volumen Espiratorio Forzado , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Músculos Pectorales/diagnóstico por imagen , Neumonectomía , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar , Sarcopenia/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X
9.
Sleep Med Clin ; 19(2): 229-237, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692748

RESUMEN

Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. Its prevalence has increased due to increasing obesity and improved screening and diagnostic strategies. OSA overlaps with cardiopulmonary diseases to promote intermittent hypoxia and autonomic dysfunction. Intermittent hypoxia increases the risk for oxidative stress and inflammation, which promotes endothelial dysfunction and predisposes to atherosclerosis and other cardiovascular complications. OSA is associated with an increased sympathetic nervous system drive resulting in autonomic dysfunction leading to worsening of cardiopulmonary diseases. Cardiovascular diseases are observed in 40% to 80% of OSA patients. Therefore, it is essential to screen and treat cardiovascular diseases.


Asunto(s)
Hipoxia , Síndromes de la Apnea del Sueño , Humanos , Hipoxia/fisiopatología , Hipoxia/complicaciones , Síndromes de la Apnea del Sueño/fisiopatología , Síndromes de la Apnea del Sueño/complicaciones , Síndromes de la Apnea del Sueño/terapia , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/complicaciones , Sistema Nervioso Autónomo/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/terapia
10.
Am J Med Sci ; 367(4): 243-250, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185404

RESUMEN

BACKGROUND: Acute blood loss anemia is the most common form of anemia and often results from traumatic injuries or gastrointestinal bleeding. There are limited studies analyzing outcomes associated with acute blood loss anemia in hospitalized patients. METHODS: The Nationwide Inpatient Sample (NIS) was analyzed from 2010 to 2014 (n = 133,809). The impact of acute blood loss anemia on in-hospital mortality, length of stay (LOS), healthcare cost, and disposition was determined using regression modeling adjusted for age, gender, race, and comorbidities. RESULTS: Hospitalized patients with acute blood loss anemia had significantly higher healthcare cost (adj OR 1.04; 95% CI: 1.04-1.05), greater lengths of stay (adj OR 1.18; 95% CI: 1.17-1.18), and were less likely to be discharged home compared to the general medical population (adj OR 0.27; 95% CI: 0.26-0.28). Acute blood loss anemia was associated with increased risk for mortality in unadjusted models (unadj 1.16; 95% CI: 1.12-1.20) but not in adjusted models (adj OR 0.91; 95% CI: 0.88-0.94). When analyzing comorbidities, a "muscle loss phenotype" had the strongest association with mortality in patients with acute blood loss anemia (adj OR 4.48; 95% CI: 4.35-4.61). The top five primary diagnostic codes associated with acute blood loss anemia were long bone fractures, GI bleeds, cardiac repair, sepsis, and OB/Gyn related causes. Sepsis had the highest association with mortality (18%, adj OR 2.59; 95% CI: 2.34-2.86) in those with acute blood loss anemia. CONCLUSIONS: Acute blood loss anemia is associated with adverse outcomes in hospitalized patients.


Asunto(s)
Anemia , Sepsis , Humanos , Pacientes Internos , Tiempo de Internación , Alta del Paciente , Anemia/complicaciones , Anemia/epidemiología , Sepsis/complicaciones , Sepsis/epidemiología , Estudios Retrospectivos
11.
Ann Am Thorac Soc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843487

RESUMEN

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. Our previous studies have identified that nocturnal hypoxemia causes skeletal muscle loss (i.e. sarcopenia) in in vitro models of COPD. RATIONALE: We aimed to extend our preclinical mechanistic findings by analyzing a large sleep registry to determine whether nocturnal hypoxemia is associated with sarcopenia in COPD patients. METHODS: Sleep studies from COPD patients (n=479) and control subjects without COPD (n=275) were analyzed. Patients with obstructive sleep apnea (OSA), as defined by apnea hypopnea index >5, were excluded. Pectoralis muscle cross sectional area (PMcsa) was quantified using CT scans performed within one year of the sleep study. We defined sarcopenia as less than the lowest 20% residuals for PMcsa of controls, which was adjusted for age, BMI, and stratified by sex. Youden's optimal cutpoint criteria was used to predict sarcopenia based on mean oxygen saturation (mean SaO2) during sleep. Additional measures of nocturnal hypoxemia were analyzed. Pectoralis muscle index (PMI) was defined as PMcsa normalized to BMI. RESULTS: On average, COPD males had 16.6% lower PMI than control males (1.41+0.44 vs 1.69+0.56 cm2/BMI, p<0.001), while COPD females had 9.4% lower PMI than control females (0.96+0.27 vs 1.06+0.33 cm2/BMI, p<0.001). COPD males with nocturnal hypoxemia had a 9.5% decrease in PMI versus COPD with normal O2 (1.33+0.39 vs 1.47+0.46 cm2/BMI, p<0.05), and 23.6% decrease compared to controls (1.33+0.39 vs 1.74+0.56 cm2/BMI, p<0.001). COPD females with nocturnal hypoxemia had a 11.2% decrease versus COPD with normal O2 (0.87+0.26 vs 0.98+0.28 cm2/BMI, p<0.05), and 17.9% decrease compared to controls (0.87+0.26 vs 1.06+0.33 cm2/BMI, p<0.001). These findings were largely replicated using multiple measures of nocturnal hypoxemia. CONCLUSIONS: We defined sarcopenia in the pectoralis muscle using residuals that take into account age, BMI, and sex. We found that COPD patients have lower PMI than non-COPD patients, and that nocturnal hypoxemia was associated with an additional decrease in the PMI of COPD patients. Additional prospective analyses are needed to determine a protective threshold of oxygen saturation to prevent or reverse sarcopenia due to nocturnal hypoxemia in COPD.

12.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 98-109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193831

RESUMEN

BACKGROUND: Hospitalization and mortality in patients with alcohol-associated hepatitis (AH), a severe form of liver disease, continue to increase over time. Given the severity of the illness, most hospitalized patients with AH are admitted from the emergency department (ED). However, there are no data on ED utilization by patients with AH. Thus, the Nationwide Emergency Department Sample (NEDS) dataset was analyzed to determine the ED utilization for AH. METHODS: Temporal trends (2016-2019) and outcomes of ED visits for AH were determined. Primary or secondary AH diagnoses were based on coding priority. Numbers of patients evaluated in the ED, severity of disease, complications of liver disease, and discharge disposition were analyzed. Crude and adjusted rates were examined, and temporal trends evaluated using logistic regression with orthogonal polynomial contrasts for each year. RESULTS: There were 466,014,370 ED visits during 2016-2019, of which 448,984 (0.096%) were for AH, 85.0% of which required hospitalization. The rate of visits for AH (primary and secondary) between 2016 and 2019 increased from 85 to 106.8/100,000 ED visits. The rate of secondary AH increased more than the rate of primary AH (from 68.6 to 86.5 vs. from 16.4 to 20.3/100,000 ED visits). Patients aged 45-64 years had the highest rate of ED visits for AH, which decreased during the study period, while the rate of ED visits for AH increased in those aged 25-44 years (from 38.5% to 42.9%). The severity of disease (ascites, hepatic encephalopathy, and acute kidney injury) also increased over time. Medicaid and private insurance were the most common payors for patients seeking care in the ED for AH. CONCLUSIONS: Temporal trends show an overall increase in ED utilization rates for AH, more patients requiring hospitalization, and an increase in the proportion of younger patients presenting to the ED with AH.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38685479

RESUMEN

BACKGROUND: Asthma classification into different subphenotypes is important to guide personalized therapy and improve outcomes. OBJECTIVES: To further explore asthma heterogeneity through determination of multiple patient groups by using novel machine learning (ML) approaches and large-scale real-world data. METHODS: We used electronic health records of patients with asthma followed at the Cleveland Clinic between 2010 and 2021. We used k-prototype unsupervised ML to develop a clustering model where predictors were age, sex, race, body mass index, prebronchodilator and postbronchodilator spirometry measurements, and the usage of inhaled/systemic steroids. We applied elbow and silhouette plots to select the optimal number of clusters. These clusters were then evaluated through LightGBM's supervised ML approach on their cross-validated F1 score to support their distinctiveness. RESULTS: Data from 13,498 patients with asthma with available postbronchodilator spirometry measurements were extracted to identify 5 stable clusters. Cluster 1 included a young nonsevere asthma population with normal lung function and higher frequency of acute exacerbation (0.8 /patient-year). Cluster 2 had the highest body mass index (mean ± SD, 44.44 ± 7.83 kg/m2), and the highest proportion of females (77.5%) and Blacks (28.9%). Cluster 3 comprised patients with normal lung function. Cluster 4 included patients with lower percent of predicted FEV1 of 77.03 (12.79) and poor response to bronchodilators. Cluster 5 had the lowest percent of predicted FEV1 of 68.08 (15.02), the highest postbronchodilator reversibility, and the highest proportion of severe asthma (44.9%) and blood eosinophilia (>300 cells/µL) (34.8%). CONCLUSIONS: Using real-world data and unsupervised ML, we classified asthma into 5 clinically important subphenotypes where group-specific asthma treatment and management strategies can be designed and deployed.

15.
Pediatr Pulmonol ; 58(1): 262-270, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205454

RESUMEN

RATIONALE: Efforts to reduce nitrogen dioxide (NO2 ) have the potential to reduce the morbidity and mortality related to asthma in children. We analyze the associations of pediatric hospital admission rates for asthma with Environmental Protection Agency (EPA) NO2  parameters at the patient zip code level. METHODS: We identified zip codes that had EPA monitors which monitored NO2  levels located in states with high asthma burden. We used the Healthcare Cost and Utilization Project (HCUP) State Inpatient Database (SID) to identify patients who were <17 years of age with diagnosis codes for asthma. We compared NO2  levels at the zip code level with the number of patients hospitalized for asthma from the HCUP SID database. RESULTS: Data from zip codes in Buffalo, Detroit, Phoenix, and Tucson from 2009 to 2011 demonstrated that the monthly mean NO2  levels predicted pediatric asthma hospital admission rates in six monitored zip codes in these four cities with time series modeling (Buffalo zip code 14206, p = 0.0089; Detroit zip code 48205, p = 0.0179; Phoenix zip code 85006, p = 0.0433; Phoenix zip code 85009, p = 0.0007; Phoenix zip code 85015, p = 0.0036; Tucson zip code 85711, p = 0.0004). CONCLUSION: Pediatric admissions to the hospital for asthma exacerbations mirror the cyclic and seasonal pattern of NO2  levels in the cities of Detroit, Buffalo, Phoenix, and Tucson. While traffic density may be higher in cities with periodicity of NO2  and asthma exacerbations, other factors could be contributing to high NO2  levels.


Asunto(s)
Contaminantes Atmosféricos , Asma , Animales , Contaminantes Atmosféricos/análisis , Asma/epidemiología , Búfalos , Incidencia , Dióxido de Nitrógeno , Estados Unidos/epidemiología , United States Environmental Protection Agency
16.
J Cachexia Sarcopenia Muscle ; 14(2): 1083-1095, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36856146

RESUMEN

BACKGROUND: Sarcopenia, or loss of skeletal muscle mass and decreased contractile strength, contributes to morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). The severity of sarcopenia in COPD is variable, and there are limited data to explain phenotype heterogeneity. Others have shown that COPD patients with sarcopenia have several hallmarks of cellular senescence, a potential mechanism of primary (age-related) sarcopenia. We tested if genetic contributors explain the variability in sarcopenic phenotype and accelerated senescence in COPD. METHODS: To identify gene variants [single nucleotide polymorphisms (SNPs)] associated with sarcopenia in COPD, we performed a genome-wide association study (GWAS) of fat free mass index (FFMI) in 32 426 non-Hispanic White (NHW) UK Biobank participants with COPD. Several SNPs within the fat mass and obesity-associated (FTO) gene were associated with sarcopenia that were validated in an independent COPDGene cohort (n = 3656). Leucocyte telomere length quantified in the UK Biobank cohort was used as a marker of senescence. Experimental validation was done by genetic depletion of FTO in murine skeletal myotubes exposed to prolonged intermittent hypoxia or chronic hypoxia because hypoxia contributes to sarcopenia in COPD. Molecular biomarkers for senescence were also quantified with FTO depletion in murine myotubes. RESULTS: Multiple SNPs located in the FTO gene were associated with sarcopenia in addition to novel SNPs both within and in proximity to the gene AC090771.2, which transcribes long non-coding RNA (lncRNA). To replicate our findings, we performed a GWAS of FFMI in NHW subjects from COPDGene. The SNP most significantly associated with FFMI was on chromosome (chr) 16, rs1558902A > T in the FTO gene (ß = 0.151, SE = 0.021, P = 1.40 × 10-12 for UK Biobank |ß= 0.220, SE = 0.041, P = 9.99 × 10-8 for COPDGene) and chr 18 SNP rs11664369C > T nearest to the AC090771.2 gene (ß = 0.129, SE = 0.024, P = 4.64 × 10-8 for UK Biobank |ß = 0.203, SE = 0.045, P = 6.38 × 10-6 for COPDGene). Lower handgrip strength, a measure of muscle strength, but not FFMI was associated with reduced telomere length in the UK Biobank. Experimentally, in vitro knockdown of FTO lowered myotube diameter and induced a senescence-associated molecular phenotype, which was worsened by prolonged intermittent hypoxia and chronic hypoxia. CONCLUSIONS: Genetic polymorphisms of FTO and AC090771.2 were associated with sarcopenia in COPD in independent cohorts. Knockdown of FTO in murine myotubes caused a molecular phenotype consistent with senescence that was exacerbated by hypoxia, a common condition in COPD. Genetic variation may interact with hypoxia and contribute to variable severity of sarcopenia and skeletal muscle molecular senescence phenotype in COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Sarcopenia , Animales , Ratones , Sarcopenia/genética , Sarcopenia/complicaciones , Fuerza de la Mano , Estudio de Asociación del Genoma Completo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Polimorfismo de Nucleótido Simple , Hipoxia
17.
Clin Transl Med ; 13(5): e1276, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37228227

RESUMEN

BACKGROUND: Patients with acute alcohol-associated hepatitis (AH) have immune dysfunction. Mitochondrial function is critical for immune cell responses and regulates senescence. Clinical translational studies using complementary bioinformatics-experimental validation of mitochondrial responses were performed in peripheral blood mononuclear cells (PBMC) from patients with AH, healthy controls (HC), and heavy drinkers without evidence of liver disease (HD). METHODS: Feature extraction for differentially expressed genes (DEG) in mitochondrial components and telomere regulatory pathways from single-cell RNAseq (scRNAseq) and integrated 'pseudobulk' transcriptomics from PBMC from AH and HC (n = 4 each) were performed. After optimising isolation and processing protocols for functional studies in PBMC, mitochondrial oxidative responses to substrates, uncoupler, and inhibitors were quantified in independent discovery (AH n = 12; HD n = 6; HC n = 12) and validation cohorts (AH n = 10; HC n = 7). Intermediary metabolites (gas-chromatography/mass-spectrometry) and telomere length (real-time PCR) were quantified in subsets of subjects (PBMC/plasma AH n = 69/59; HD n = 8/8; HC n = 14/27 for metabolites; HC n = 13; HD n = 8; AH n = 72 for telomere length). RESULTS: Mitochondrial, intermediary metabolite, and senescence-regulatory genes were differentially expressed in PBMC from AH and HC in a cell type-specific manner at baseline and with lipopolysaccharide (LPS). Fresh PBMC isolated using the cell preparation tube generated optimum mitochondrial responses. Intact cell and maximal respiration were lower (p ≤ .05) in AH than HC/HD in the discovery and validation cohorts. In permeabilised PBMC, maximum respiration, complex I and II function were lower in AH than HC. Most tricarboxylic acid (TCA) cycle intermediates in plasma were higher while those in PBMC were lower in patients with AH than those from HC. Lower telomere length, a measure of cellular senescence, was associated with higher mortality in AH. CONCLUSION: Patients with AH have lower mitochondrial oxidative function, higher plasma TCA cycle intermediates, with telomere shortening in nonsurvivors.


Asunto(s)
Hepatitis , Leucocitos Mononucleares , Humanos , Leucocitos Mononucleares/metabolismo , Mitocondrias/genética
18.
Aging Cell ; 22(7): e13852, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37101412

RESUMEN

Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+ /NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+ -dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+ -dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+ , that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+ -sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.


Asunto(s)
Hiperamonemia , Sirtuina 3 , Sirtuinas , Humanos , Ratones , Animales , Sirtuinas/metabolismo , Sirtuina 3/metabolismo , Hiperamonemia/metabolismo , Amoníaco/metabolismo , NAD/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Acetilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA