Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38650740

RESUMEN

Graphene quantum dots (GQDs), are biocompatible materials, with mechanical strength and stability. Chitosan, has antibacterial and anti-inflammatory properties, and biocompatibility. Wound healing is a challenging process especially in chronic diseases and infection. In this study, films consisting of chitosan and graphene quantum dots were developed for application in infected wounds. The chitosan-graphene films were prepared in the acidic solution followed by slow solvent evaporation and drying. The chitosan-graphene films were characterized by the scanning electron microscopy, x-ray diffraction, atomic force microscopy, Raman spectroscopy and thermogravimetric analysis. The films' was evaluated by the wound healing assays, hemolytic potential, and nitrite production, cytokine production and swelling potential. The obtained films were flexible and well-structured, promoting cell migration, greater antibacterial activity, lower hemolytic activity, and maintaining wound moisture. Our data suggested that the use of graphene quantum dot-containing chitosan films would be an efficient and promising way in combating wounds.

2.
Molecules ; 26(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576919

RESUMEN

Ultrasound (US) and X-ray imaging are diagnostic methods that are commonly used to image internal body structures. Several organic and inorganic imaging contrast agents are commercially available. However, their synthesis and purification remain challenging, in addition to posing safety issues. Here, we report on the promise of widespread, safe, and easy-to-produce particulate calcium fluoride (part-CaF2) as a bimodal US and X-ray contrast agent. Pure and highly crystalline part-CaF2 is obtained using a cheap commercial product. Scanning electron microscopy (SEM) depicts the morphology of these particles, while energy-dispersive X-ray spectroscopy (EDS) confirms their chemical composition. Diffuse reflectance ultraviolet-visible spectroscopy highlights their insulating behavior. The X-ray diffraction (XRD) pattern reveals that part-CaF2 crystallizes in the face-centered cubic cell lattice. Further analyses regarding peak broadening are performed using the Scherrer and Williamson-Hall (W-H) methods, which pinpoint the small crystallite size and the presence of lattice strain. X-ray photoelectron spectroscopy (XPS) solely exhibits specific peaks related to CaF2, confirming the absence of any contamination. Additionally, in vitro cytotoxicity and in vivo maximum tolerated dose (MTD) tests prove the biocompatibility of part-CaF2. Finally, the results of the US and X-ray imaging tests strongly signal that part-CaF2 could be exploited in bimodal bioimaging applications. These findings may shed a new light on calcium fluoride and the opportunities it offers in biomedical engineering.


Asunto(s)
Materiales Biocompatibles , Fluoruro de Calcio , Cristalización
3.
Langmuir ; 34(5): 1981-1991, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29334739

RESUMEN

In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.

4.
Molecules ; 23(7)2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021974

RESUMEN

Environmental remediation relies mainly on using various technologies (e.g., adsorption, absorption, chemical reactions, photocatalysis, and filtration) for the removal of contaminants from different environmental media (e.g., soil, water, and air). The enhanced properties and effectiveness of nanotechnology-based materials makes them particularly suitable for such processes given that they have a high surface area-to-volume ratio, which often results in higher reactivity. This review provides an overview of three main categories of nanomaterials (inorganic, carbon-based, and polymeric-based materials) used for environmental remediation. The use of these nanomaterials for the remediation of different environmental contaminants-such as heavy metals, dyes, chlorinated organic compounds, organophosphorus compounds, volatile organic compounds, and halogenated herbicides-is reviewed. Various recent examples are extensively highlighted focusing on the materials and their applications.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Nanoestructuras , Nanotecnología/métodos
5.
Pharm Res ; 33(3): 603-14, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26511860

RESUMEN

PURPOSE: This study aimed to investigate the impact of the size of X-ray iodinated contrast agent in nano-emulsions, on their toxicity and fate in vivo. METHODS: A new compound, triiodobenzoate cholecalciferol, was synthetized, formulated as nano-emulsions, and followed after i.v. administration in mice by X-ray imaging (micro computed tomography). Physicochemical characterization and process optimization allowed identifying a good compromise between X-ray contrasting properties, monodispersity and stability. This also allowed selecting two formulations with different sizes, hydrodynamic diameters of 55 and 100 nm, but exactly the same composition. In vitro experiments were performed on two cell lines, namely hepatocytes (BNL-CL2) and macrophages (RAW264.7). RESULTS: Cell viability studies, cell uptake observations by confocal microscopy, and uptake quantification by fluorimetry, disclosed clear differences between two formulations, as well as between two types of cell lines. After i.v. injection of the two iodinated nano-emulsions in mice, CT scans provided the quantification of the pharmacokinetics and biodistributions. We finally showed that the size in the nano-emulsions has not a real impact on the pharmacokinetics and biodistributions, but has a strong influence on their toxicity, corroborating the in vitro results. CONCLUSIONS: This study shows that the size of the nanocarrier significantly matters, likely due to highly different interactions with cells and tissues. Graphical Abstract A study on the effect of the size of cholecciferol nano-emulsions, on their in vivo becoming, through X-ray imaging modality.


Asunto(s)
Medios de Contraste/efectos adversos , Medios de Contraste/metabolismo , Emulsiones/efectos adversos , Emulsiones/metabolismo , Yodo/química , Nanopartículas/efectos adversos , Nanopartículas/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica/métodos , Colecalciferol/administración & dosificación , Colecalciferol/efectos adversos , Colecalciferol/metabolismo , Medios de Contraste/administración & dosificación , Emulsiones/administración & dosificación , Hepatocitos/metabolismo , Yodo/administración & dosificación , Macrófagos/metabolismo , Ratones , Nanopartículas/administración & dosificación , Distribución Tisular , Ácidos Triyodobenzoicos/administración & dosificación , Ácidos Triyodobenzoicos/efectos adversos , Ácidos Triyodobenzoicos/metabolismo , Microtomografía por Rayos X/métodos , Rayos X
6.
Biomater Sci ; 12(3): 725-737, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38099834

RESUMEN

Drug delivery systems based on amphiphilic supramolecular macrocycles have garnered increased attention over the past two decades due to their ability to successfully formulate nanoparticles. Macrocyclic (MC) materials can self-assemble at lower concentrations without the need for surfactants and polymers, but surfactants are required to form and stabilize nanoparticles at higher concentrations. Using MCs to deliver both hydrophilic and hydrophobic guest molecules is advantageous. We developed two novel types of amphiphilic macrocycle nanoparticles (MC NPs) capable of delivering either Nile Red (NR) (a hydrophobic model) or Rhodamine B (RhB) (a hydrophilic model) fluorescent dyes. We extensively characterized the materials using various techniques to determine size, morphology, stability, hemolysis, fluorescence, loading efficiency (LE), and loading capacity (LC). We then loaded the CDK4/6 inhibitor Palbociclib (Palb) into both MC NPs using a solvent diffusion method. This yielded Palb-MC NPs in the size range of 65-90 nm. They exhibited high stability over time and in fetal bovine serum with negligible toxicity against erythrocytes. Cytotoxicity was minimal when tested against RAW macrophages, human fibroblast HDFn, and adipose stromal cells (ASCs) at higher concentrations of MC NPs. Cell viability studies were conducted with different concentrations of MC NPs, Palb-MC NPs, and free Palb against RAW macrophages, human U-87 GBM, and human M14 melanoma cell lines in vitro. Flow cytometry experiments revealed that blank MC NPs and Palb-MC NPs were selectively targeted to melanoma cells, resulting in cell death compared to the other two cell lines. Future work will focus on studying the biological effect of MC NPs including their binding affinity with molecules/receptors expressed on the M14 and other melanoma cell surfaces by molecular docking simulations. Subsequently, we will evaluate the MCs as a component of combination therapy in a murine melanoma model.


Asunto(s)
Melanoma , Nanopartículas , Piperazinas , Piridinas , Ratones , Humanos , Animales , Melanoma/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Tensoactivos , Portadores de Fármacos/química , Quinasa 4 Dependiente de la Ciclina
7.
Acta Biomater ; 171: 19-36, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37739244

RESUMEN

Computed tomography (CT) is a powerful and widely used imaging technique in modern medicine. However, it often requires the use of contrast agents to visualize structures with similar radiographic density. Unfortunately, current clinical contrast agents (CAs) for CT have remained largely unchanged for decades and come with several significant drawbacks, including serious nephrotoxicity and short circulation half-lives. The next generation of CT radiocontrast agents should strive to be long-circulating, non-toxic, and non-immunogenic. Nanoparticle contrast agents have shown promise in recent years and are likely to comprise the majority of next-generation CT contrast agents. This review highlights the fundamental mechanism and background of X-ray and contrast agents. It also focuses on the challenges associated with current clinical contrast agents and provides a brief overview of potential future agents that are based on various materials such as lipids, polymers, dendrimers, metallic, and non-metallic inorganic nanoparticles (NPs). STATEMENT OF SIGNIFICANCE: We realized a need for clarification on a number of concerns related to the use of iodinated contrast material as debates regarding the safety of these agents with patients with kidney disease, shellfish allergies, and thyroid dysfunction remain ongoing in medical practice. This review was partially inspired by debates witnessed in medical practice regarding outdated misconceptions of contrast material that warrant clarification in translational and clinical arenas. Given that conversation around currently available agents is at somewhat of a high water mark, and nanoparticle research has now reached an unprecedented number of readers, we find that this review is timely and unique in the context of recent discussions in the field.


Asunto(s)
Medios de Contraste , Nanopartículas , Humanos , Medios de Contraste/química , Rayos X , Tomografía Computarizada por Rayos X/métodos , Nanopartículas/uso terapéutico , Nanopartículas/química , Agua
8.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045274

RESUMEN

Drug delivery systems based on amphiphilic supramolecular macrocycles have garnered increased attention over the past two decades due to their ability to successfully formulate nanoparticles. Macrocyclic (MC) materials can self-assemble at lower concentrations without the need for surfactants and polymers, but surfactants are required to form and stabilize nanoparticles at higher concentrations. Using MCs to deliver both hydrophilic and hydrophobic guest molecules is advantageous. We developed two novel types of amphiphilic macrocycle nanoparticles (MC NPs) capable of delivering either Nile Red (NR) (a hydrophobic model) or Rhodamine B (RhB) (a hydrophilic model) fluorescent dyes. We extensively characterized the materials using various techniques to determine size, morphology, stability, hemolysis, fluorescence, loading efficiency (LE), and loading capacity (LC). We then loaded the CDK4/6 inhibitor Palbociclib (Palb) into both MC NPs using a solvent diffusion method. This yielded Palb-MC NPs in the size range of 65-90 nm. They exhibited high stability over time and in fetal bovine serum with negligible toxicity against erythrocytes. Cytotoxicity was minimal when tested against RAW macrophages, human fibroblast HDFn , and adipose stromal cells (ASCs) at higher concentrations of MC NPs. Cell viability studies were conducted with different concentrations of MC NPs, Palb-MC NPs, and free Palb against RAW macrophages, human U-87 GBM, and human M14 melanoma cell lines in vitro. Flow cytometry experiments revealed that blank MC NPs and Palb-MC NPs were selectively targeted to melanoma cells, resulting in cell death compared to the other two cell lines. Future work will focus on studying the biological effect of MC NPs including their binding affinity with molecules/receptors expressed on the M14 and other melanoma cell surface by molecular docking simulations. Subsequently, we will evaluate the MCs as a component of combination therapy in a murine melanoma model.

9.
ACS Appl Mater Interfaces ; 15(26): 31320-31329, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37246942

RESUMEN

Natural and renewable resources from plants or animals are an important source of biomaterials due to their biocompatibility and high availability. Lignin is a biopolymer present in the biomass of plants, where it is intertwined and cross-linked with other polymers and macromolecules in the cell walls, generating a lignocellulosic material with potential applications. We have prepared lignocellulosic-based nanoparticles with an average size of 156 nm that exhibit a high photoluminescence signal when excited at 500 nm with emission in the near-infrared (NIR) region at 800 nm. The advantage of these lignocellulosic-based nanoparticles is their natural luminescent properties and their origin from rose biomass waste, which eliminates the need for encapsulation or functionalization of imaging agents. Moreover, the in vitro cell growth inhibition (IC50) of lignocellulosic-based nanoparticles is about 3 mg/mL, and no in vivo toxicity was registered up to 57 mg/kg, which suggests that they are suitable for bioimaging applications. In addition, these nanoparticles can circulate in the blood and are excreted in urine. The combined high luminescence signal in NIR, small size, low in vitro toxicity, low in vivo toxicity, and blood circulation support the potential of lignin-based nanoparticles as a novel bioimaging agent.


Asunto(s)
Lignina , Nanopartículas , Animales , Nanopartículas/toxicidad , Luminiscencia , Espectroscopía Infrarroja Corta
10.
ACS Appl Mater Interfaces ; 14(49): 54389-54400, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36449986

RESUMEN

Here, we report the synthesis of robust hybrid iodinated silica-lipid nanoemulsions (HSLNEs) for use as a contrast agent for ultrasound and X-ray applications. We engineered iodinated silica nanoparticles (SNPs), lipid nanoemulsions, and a series of HSLNEs by a low-energy spontaneous nanoemulsification process. The formation of a silica shell requires sonication to hydrolyze and polymerize/condensate the iodomethyltrimethoxysilane at the oil/water interface of the nanoemulsion droplets. The resulting nanoemulsions (NEs) exhibited a homogeneous spherical morphology under transmission electron microscopy. The particles had diameters ranging from 20 to 120 nm with both negative and positive surface charges in the absence and presence of cetyltrimethylammonium bromide (CTAB), respectively. Unlike CTAB-coated nanoformulations, the CTAB-free NEs showed excellent biocompatibility in murine RAW macrophages and human U87-MG cell lines in vitro. The maximum tolerated dose assessment was evaluated to verify their safety profiles in vivo. In vitro X-ray and ultrasound imaging and in vivo computed tomography were used to monitor both iodinated SNPs and HSLNEs, validating their significant contrast-enhancing properties and suggesting their potential as dual-modality clinical agents in the future.


Asunto(s)
Medios de Contraste , Nanopartículas , Humanos , Ratones , Animales , Medios de Contraste/farmacología , Rayos X , Dióxido de Silicio , Cetrimonio , Ultrasonografía , Lípidos
11.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35406278

RESUMEN

Alpha and beta particulate radiation are used for non-treated neoplasia, due to their ability to reach and remain in tumor sites. Radium-223 (223Ra), an alpha emitter, promotes localized cytotoxic effects, while radioactive gold (198Au), beta-type energy, reduces radiation in the surrounding tissues. Nanotechnology, including several radioactive nanoparticles, can be safely and effectively used in cancer treatment. In this context, this study aims to analyze the antitumoral effects of [223Ra]Ra nanomicelles co-loaded with radioactive gold nanoparticles ([198Au]AuNPs). For this, we synthesize and characterize nanomicelles, as well as analyze some parameters, such as particle size, radioactivity emission, dynamic light scattering, and microscopic atomic force. [223Ra]Ra nanomicelles co-loaded with [198Au]AuNPs, with simultaneous alpha and beta emission, showed no instability, a mean particle size of 296 nm, and a PDI of 0.201 (±0.096). Furthermore, nanomicelles were tested in an in vitro cytotoxicity assay. We observed a significant increase in tumor cell death using combined alpha and beta therapy in the same formulation, compared with these components used alone. Together, these results show, for the first time, an efficient association between alpha and beta therapies, which could become a promising tool in the control of tumor progression.

12.
Int J Biol Macromol ; 173: 203-210, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33484799

RESUMEN

Nonwoven fabrics containing silver nanoparticles (AgNPs) are widely utilized to assist management of infected wounds and those at risk of infection. However, such materials have varied responses due to their chemical nature. Herein we investigated the correlation between the concentration of AgNPs taken up by nonwoven viscose material and antibacterial activity in a simulated wound fluid model against two bacterial models (i.e., Escherichia coli and Staphylococcus aureus). Thereafter, the developed nonwoven viscose containing AgNPs were independently coated with two polyacid carbohydrate polymers (i.e., carboxymethyl chitosan (CMCs), alginate (ALG)), and gelatin (GEL) protein in order to study their influence on the physical and biological attributes in vitro and in vivo. Intensive characterizations were utilized to monitor the physicochemical features of the developed nonwoven viscose. The results demonstrated that higher concentrations of AgNPs were taken up by viscose fabric whilewhile increasing AgNPs in the colloidal solution during padding process. Overall, the treated nonwoven fabric with and without polymers' coatings showed remarkable antibacterial activity against two bacterial models in vitro. As well as they achieved high and speed wound recovery in rats which was almost similar to commercial dermazin treatment. Therefore, it validates excellent nonwoven dressing clinically relevant to the wound type and condition.


Asunto(s)
Quemaduras Químicas/tratamiento farmacológico , Infecciones por Escherichia coli/tratamiento farmacológico , Nanopartículas del Metal/química , Plata/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Alginatos/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Vendajes , Quemaduras Químicas/microbiología , Carboximetilcelulosa de Sodio/química , Quitosano/análogos & derivados , Quitosano/química , Preparaciones de Acción Retardada/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Infecciones por Escherichia coli/microbiología , Gelatina/química , Nanopartículas del Metal/ultraestructura , Ratas , Plata/química , Piel/efectos de los fármacos , Piel/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Cicatrización de Heridas/fisiología
13.
Polymers (Basel) ; 13(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34577961

RESUMEN

We have previously demonstrated that cellulose nanocrystals modified with poly(ethylenimine) (PEI-f-CNC) are capable of capturing volatile organic compounds (VOCs) associated with malodors. In this manuscript, we describe our efforts to develop a scalable synthesis of these materials from bulk cotton. This work culminated in a reliable protocol for the synthesis of unmodified cellulose nanocrystals (CNCs) from bulk cotton on a 0.5 kg scale. Additionally, we developed a protocol for the modification of the CNCs by means of sequential 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) coupling to modify their surface with poly(ethylenimine) on a 100 g scale. Subsequently, we evaluated the performance of the PEI-f-CNC materials that were prepared in a series of VOC capture experiments. First, we demonstrated their efficacy in capturing volatile fatty acids emitted at a rendering plant when formulated as packed-bed filter cartridges. Secondly, we evaluated the potential to use aqueous PEI-f-CNC suspensions as a spray-based delivery method for VOC remediation. In both cases, the PEI-f-CNC formulations reduced detectable malodor VOCs by greater than 90%. The facile scaled synthesis of these materials and their excellent performance at VOC remediation suggest that they may emerge as a useful strategy for the remediation of VOCs associated with odor.

14.
Polymers (Basel) ; 13(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205186

RESUMEN

In this study we developed electrospun cellulose acetate nanofibers (CANFs) that were loaded with a model non-steroidal anti-inflammatory drug (NSAID) (ibuprofen, Ib) and coated with poly(acrylamide) (poly-AAm) hydrogel polymer using two consecutive steps: an electrospinning process followed by photopolymerization of AAm. Coated and non-coated CANF formulations were characterized by several microscopic and spectroscopic techniques to evaluate their physicochemical properties. An analysis of the kinetic release profile of Ib showed noticeable differences due to the presence or absence of the poly-AAm hydrogel polymer. Poly-AAm coating facilitated a constant release rate of drug as opposed to a more conventional burst release. The non-coated CANFs showed low cumulative drug release concentrations (ca. 35 and 83% at 5 and 10% loading, respectively). Conversely, poly-AAm coated CANFs were found to promote the release of drug (ca. 84 and 99.8% at 5 and 10% loading, respectively). Finally, the CANFs were found to be superbly cytocompatible.

15.
ACS Biomater Sci Eng ; 7(3): 1181-1191, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33590748

RESUMEN

Various noninvasive imaging techniques are used to produce deep-tissue and high-resolution images for biomedical research and clinical purposes. Organic and inorganic bioimaging agents have been developed to enhance the resolution and contrast intensity. This paper describes the synthesis of polytetrafluoroethylene-like nanoparticles (PTFE≈ NPs), their characterization, biological activity, and bioimaging properties. Transmission electron microscopy (TEM) images showed the shape and the size of the as-obtained small and ultrasmall PTFE≈ NPs. Fourier transform infrared spectroscopy (FTIR) confirmed the PTFE-like character of the samples. X-ray diffraction (XRD) enabled the determination of the crystallization system, cell lattice, and index of crystallinity of the material in addition to the presence of titania (TiO2) as the contamination. These findings were corroborated by X-ray photoelectron spectroscopy (XPS) that identifies the chemical states of the elements present in the samples along with their atomic percentages allowing the determination of both the purity index of the sample and the nature of the impurities. Additionally, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) was used to further assess the optical properties of the materials. Importantly, PTFE≈ NPs showed significant in vitro and in vivo biocompatibility. Lastly, PTFE≈ NPs were tested for their ultrasound and X-ray contrast properties. Our encouraging preliminary results open new avenues for PTFE-like nanomaterials as a suitable multifunctional contrast agent for biomedical imaging applications. Combined with suitable surface chemistry and morphology design, these findings shed light to new opportunities offered by PTFE nanoparticles in the ever-booming biomedical field.


Asunto(s)
Medios de Contraste , Nanopartículas , Politetrafluoroetileno , Difracción de Rayos X , Rayos X
16.
ACS Biomater Sci Eng ; 6(12): 6671-6679, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33320612

RESUMEN

We developed four types of para-phenylene-bridged periodic mesoporous organosilica NPs (p-P PMO NPs) with tailored physical parameters including size, morphology, porosity, and surface area using a new polymer-scaffolding approach. The particles have been formulated to facilitate the codelivery of small-molecule hydrophobic/hydrophilic cargos such as model anticancer drugs (i.e., doxorubicin hydrochloride (DOX) and O6-benzylguanine) and model fluorescent dyes (i.e., rhodamine 6G and Nile red). p-P PMO NPs were synthesized via a cetyltrimethylammonium bromide (CTAB)-directed sol-gel process using two different organic solvents and in the presence of polymeric scaffolding constituents that led to morphologically distinct PMO NPs despite using the same organosilane precursors. After the formulation process, the polymeric scaffolding agent was conveniently washed away from the PMO NPs. Extensive analyses were used to characterize the physicochemical attributes of the PMO NPs such as their chemical composition, morphologies, etc. Spherical and rod-shaped PMOs of diameters ranging between 79 and 342 nm, surface areas between 770 and 1060 m2/g, and pore volumes between 0.79 and 1.37 cm3/g were prepared using the polymer-scaffolding approach. The performance of these materials toward drug-loading capacity, cytotoxicity, and cancer cell internalization was evaluated. Interestingly, the designed particles exhibited significantly high payloads of drugs and dyes (up to 78 and 94%, respectively). Cellular studies also demonstrated exceptional biocompatibility and marked internalization into both human breast cancer MCF-7 and glioblastoma U-87 MG cells. Further, DOX also possessed a noticeable release from particles and accumulation in cell nuclei with increased incubation time in vitro. Ultimately, this work validates the controlled design and synthesis of PMO NPs using a polymer-scaffolding approach and highlights the potential of these materials as excellent delivery systems for combination therapy with high loading capability to improve the therapeutic index for cancers.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Compuestos de Organosilicio , Doxorrubicina , Humanos , Polímeros
17.
ACS Appl Bio Mater ; 3(8): 5067-5079, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021683

RESUMEN

Lipid nanoemulsions (LNEs) are promising nanocarriers for delivering high payloads of lipophilic molecules. Nonetheless, the dynamic nature at their aqueous interfaces results in poor surface chemistry and thus ligand functionalization can be challenging. Herein, two independent strategies, postconjugation and preconjugation, were explored to prepare LNEs grafted covalently with model ligands, fluorescein dye and RGD peptide, respectively. Fluorescein was successfully conjugated with high grafting efficiency to an amine-functionalized lipid nanoemulsion (NH2-LNE) as determined by spectrophotometric analysis. First, we formulated NH2-LNEs by a low-energy spontaneous emulsification technique in the presence of oleylamine (OA) within the oily core of the nanodroplets, thus creating primary amine-reactive sites at the oil/water interface. These amines were used to incorporate fluorescein, yielding fluorescent LNEs with grafting efficiencies of 33, 69, and 69% at NH2-LNEs with [OA]oil = 0.18, 0.34, and 0.49 M, respectively. We also developed RGD-labeled LNEs (RGD-LNEs) and evaluated the nanomaterial with model cell lines that overexpress αVß3 integrins on their surfaces. To this end, we initially synthesized an RGD-Oleate fatty acid-peptide conjugate by solid-phase synthesis. The lipophilic segment of this conjugate readily embedded into the oily core of the LNE, and the hydrophilic head (RGD moiety) was oriented toward the LNE interface. In vitro cytotoxicity and cellular uptake studies were undertaken on different cancer cell lines including HaCaT human umbilical vein endothelial cells (HUVECs), MCF-7, and U-87 MG and compared to uptake experiments with RAW 264.7 macrophages. Confocal imaging and flow cytometry showed that RGD-LNEs were preferentially taken up by all of the tumor cell lines but showed very slight accumulation in RAW macrophages. Unmodified LNE controls did not show any appreciable cellular uptake. This work provides a simple and reliable methodology for the incorporation of multiple ligands on a single surface to facilitate active tumor targeting with LNE-based drug/imaging carriers for theranostic applications.

18.
Chem Commun (Camb) ; 56(4): 607-610, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31830163

RESUMEN

Periodic mesoporous organosilica nanoparticles (PMO SiNPs) were developed for the targeted capture of specific volatile organic compounds (VOCs). The removal kinetics for adsorbing VOCs were fast and the maximum removal could be achieved within less than 30 min. PMO SiNPs removed >99% of VOCs at a low sorbent dose (i.e. >0.5 mL analyte per g PMO SiNPs). They also showed good recyclability and maintained reasonable removal efficiencies after five cycles (i.e. 77% and 65% for hexanal and butyric acid vapors, respectively).

19.
RSC Adv ; 10(72): 44312-44322, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-35517180

RESUMEN

A series of amine-functionalized cellulose nanocrystal materials were successfully synthesized, characterized, and evaluated for the remediation of pesticide contaminants from organic and aqueous media. Their ability to degrade malathion in organic systems has been examined, resulting in up to 100% degradation of the compound into detectable lower molecular weight by-products. A poly(ethylenimine) cellulose nanocrystal (CNC-PEI) material was also capable of degrading aqueous solutions of malathion, deltamethrin, and permethrin with 100%, 95%, and 78% degradation, respectively. Thus, these materials can potentially serve as a new and viable remediation technique based on their ability to effectively degrade various pesticides. The reusability of the CNC-PEI was also explored. The CNC-PEI material maintained its ability to degrade malathion throughout two wash and re-use cycles.

20.
Biomater Sci ; 8(11): 3032-3043, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32314777

RESUMEN

The synthesis and application of gold nanoparticles (AuNPs) have attracted much attention due to their interesting optical and chemical properties, as well as their utility in imaging, therapeutics, sensors, electronics, and catalysis. AuNPs are synthesized using multiple approaches, followed by chemical modification or encapsulation, to enhance their colloidal stability, biocompatibility, and targeting. Here, we report the one-step synthesis of gold-polyester nanoparticles for use as an imaging agent. The AuNPs were prepared inside polymeric NPs by means of ultraviolet irradiation of a gold salt in the presence of Irgacure I-2959 photoinitiator. We monitored the kinetic growth and nucleation of AuNPs (in vitro and ex vivo) over time using spectral analysis. Moreover, we investigated the cytotoxicity, localized plasmonic surface resonance (LSPR), and cellular imaging capabilities of the Au-polyester nanoparticles. The resulting Au-polyester NPs were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) to probe their chemical structure, size, zeta potential (ζ), and morphology, respectively. Furthermore, in vitro experiments showed that the NP formulation is stable over time and exhibits negligible toxicity against 3T3 fibroblast and U-87 MG glioblastoma cells. The results also demonstrated that the Au-polyester NPs exhibit excellent cellular imaging properties. This one-step strategy goes beyond current syntheses of gold-polyester nanoparticles because it can be used to synthesize the imaging agent in situ (i.e., in living cells) in lieu of conventional ex situ approaches.


Asunto(s)
Oro , Nanopartículas del Metal , Poliésteres , Células 3T3 , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dispersión Dinámica de Luz , Oro/administración & dosificación , Oro/química , Oro/efectos de la radiación , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Nanopartículas del Metal/ultraestructura , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Poliésteres/administración & dosificación , Poliésteres/química , Poliésteres/efectos de la radiación , Propano/análogos & derivados , Propano/química , Propano/efectos de la radiación , Células RAW 264.7 , Espectroscopía Infrarroja por Transformada de Fourier , Rayos Ultravioleta , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA