Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834405

RESUMEN

Thioesters of coenzyme A (CoA) carrying different acyl chains (acyl-CoAs) are central intermediates of many metabolic pathways and donor molecules for protein lysine acylation. Acyl-CoA species largely differ in terms of cellular concentrations and physico-chemical properties, rendering their analysis challenging. Here, we compare several approaches to quantify cellular acyl-CoA concentrations in normal and ischemic rat liver, using HPLC and LC-MS/MS for multi-acyl-CoA analysis, as well as NMR, fluorimetric and spectrophotometric techniques for the quantification of acetyl-CoAs. In particular, we describe a simple LC-MS/MS protocol that is suitable for the relative quantification of short and medium-chain acyl-CoA species. We show that ischemia induces specific changes in the short-chain acyl-CoA relative concentrations, while mild ischemia (1-2 min), although reducing succinyl-CoA, has little effects on acetyl-CoA, and even increases some acyl-CoA species upstream of the tricarboxylic acid cycle. In contrast, advanced ischemia (5-6 min) also reduces acetyl-CoA levels. Our approach provides the keys to accessing the acyl-CoA metabolome for a more in-depth analysis of metabolism, protein acylation and epigenetics.


Asunto(s)
Acilcoenzima A , Espectrometría de Masas en Tándem , Ratas , Animales , Acetilcoenzima A/análisis , Cromatografía Liquida/métodos , Acilcoenzima A/metabolismo , Coenzima A/análisis , Isquemia , Hígado/metabolismo
2.
BMC Biol ; 19(1): 228, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674701

RESUMEN

BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.


Asunto(s)
Neoplasias , Nucleósido-Difosfato Quinasa , Animales , Membranas Intracelulares , Ratones , Mitocondrias , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Nucleósido Difosfato Quinasa D/metabolismo , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/metabolismo
3.
Nutrients ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35276943

RESUMEN

Nutritional habits can have a significant impact on cardiovascular health and disease. This may also apply to cardiotoxicity caused as a frequent side effect of chemotherapeutic drugs, such as doxorubicin (DXR). The aim of this work was to analyze if diet, in particular creatine (Cr) supplementation, can modulate cardiac biochemical (energy status, oxidative damage and antioxidant capacity, DNA integrity, cell signaling) and functional parameters at baseline and upon DXR treatment. Here, male Wistar rats were fed for 4 weeks with either standard rodent diet (NORMAL), soy-based diet (SOY), or Cr-supplemented soy-based diet (SOY + Cr). Hearts were either freeze-clamped in situ or following ex vivo Langendorff perfusion without or with 25 µM DXR and after recording cardiac function. The diets had distinct cardiac effects. Soy-based diet (SOY vs. NORMAL) did not alter cardiac performance but increased phosphorylation of acetyl-CoA carboxylase (ACC), indicating activation of rather pro-catabolic AMP-activated protein kinase (AMPK) signaling, consistent with increased ADP/ATP ratios and lower lipid peroxidation. Creatine addition to the soy-based diet (SOY + Cr vs. SOY) slightly increased left ventricular developed pressure (LVDP) and contractility dp/dt, as measured at baseline in perfused heart, and resulted in activation of the rather pro-anabolic protein kinases Akt and ERK. Challenging perfused heart with DXR, as analyzed across all nutritional regimens, deteriorated most cardiac functional parameters and also altered activation of the AMPK, ERK, and Akt signaling pathways. Despite partial reprogramming of cell signaling and metabolism in the rat heart, diet did not modify the functional response to supraclinical DXR concentrations in the used acute cardiotoxicity model. However, the long-term effect of these diets on cardiac sensitivity to chronic and clinically relevant DXR doses remains to be established.


Asunto(s)
Creatina , Doxorrubicina , Animales , Creatina/farmacología , Dieta , Doxorrubicina/toxicidad , Masculino , Ratas , Ratas Wistar , Transducción de Señal
4.
Cell Biosci ; 11(1): 195, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789336

RESUMEN

BACKGROUND: NME6 is a member of the nucleoside diphosphate kinase (NDPK/NME/Nm23) family which has key roles in nucleotide homeostasis, signal transduction, membrane remodeling and metastasis suppression. The well-studied NME1-NME4 proteins are hexameric and catalyze, via a phospho-histidine intermediate, the transfer of the terminal phosphate from (d)NTPs to (d)NDPs (NDP kinase) or proteins (protein histidine kinase). For the NME6, a gene/protein that emerged early in eukaryotic evolution, only scarce and partially inconsistent data are available. Here we aim to clarify and extend our knowledge on the human NME6. RESULTS: We show that NME6 is mostly expressed as a 186 amino acid protein, but that a second albeit much less abundant isoform exists. The recombinant NME6 remains monomeric, and does not assemble into homo-oligomers or hetero-oligomers with NME1-NME4. Consequently, NME6 is unable to catalyze phosphotransfer: it does not generate the phospho-histidine intermediate, and no NDPK activity can be detected. In cells, we could resolve and extend existing contradictory reports by localizing NME6 within mitochondria, largely associated with the mitochondrial inner membrane and matrix space. Overexpressing NME6 reduces ADP-stimulated mitochondrial respiration and complex III abundance, thus linking NME6 to dysfunctional oxidative phosphorylation. However, it did not alter mitochondrial membrane potential, mass, or network characteristics. Our screen for NME6 protein partners revealed its association with NME4 and OPA1, but a direct interaction was observed only with RCC1L, a protein involved in mitochondrial ribosome assembly and mitochondrial translation, and identified as essential for oxidative phosphorylation. CONCLUSIONS: NME6, RCC1L and mitoribosomes localize together at the inner membrane/matrix space where NME6, in concert with RCC1L, may be involved in regulation of the mitochondrial translation of essential oxidative phosphorylation subunits. Our findings suggest new functions for NME6, independent of the classical phosphotransfer activity associated with NME proteins.

5.
Front Cell Dev Biol ; 9: 731015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733845

RESUMEN

AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis under conditions of energy stress. Though heart is one of the most energy requiring organs and depends on a perfect match of energy supply with high and fluctuating energy demand to maintain its contractile performance, the role of AMPK in this organ is still not entirely clear, in particular in a non-pathological setting. In this work, we characterized cardiomyocyte-specific, inducible AMPKα1 and α2 knockout mice (KO), where KO was induced at the age of 8 weeks, and assessed their phenotype under physiological conditions. In the heart of KO mice, both AMPKα isoforms were strongly reduced and thus deleted in a large part of cardiomyocytes already 2 weeks after tamoxifen administration, persisting during the entire study period. AMPK KO had no effect on heart function at baseline, but alterations were observed under increased workload induced by dobutamine stress, consistent with lower endurance exercise capacity observed in AMPK KO mice. AMPKα deletion also induced a decrease in basal metabolic rate (oxygen uptake, energy expenditure) together with a trend to lower locomotor activity of AMPK KO mice 12 months after tamoxifen administration. Loss of AMPK resulted in multiple alterations of cardiac mitochondria: reduced respiration with complex I substrates as measured in isolated mitochondria, reduced activity of complexes I and IV, and a shift in mitochondrial cristae morphology from lamellar to mixed lamellar-tubular. A strong tendency to diminished ATP and glycogen level was observed in older animals, 1 year after tamoxifen administration. Our study suggests important roles of cardiac AMPK at increased cardiac workload, potentially limiting exercise performance. This is at least partially due to impaired mitochondrial function and bioenergetics which degrades with age.

6.
J Mol Neurosci ; 34(1): 77-87, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18040888

RESUMEN

Oxidative damage has been reported to be involved in the pathogenesis of diabetic neuropathy and neurodegenerative diseases. Recent evidence suggests that the antidiabetic drug metformin prevents oxidative stress-related cellular death in non-neuronal cell lines. In this report, we point to the direct neuroprotective effect of metformin, using the etoposide-induced cell death model. The exposure of intact primary neurons to this cytotoxic insult induced permeability transition pore (PTP) opening, the dissipation of mitochondrial membrane potential (DeltaPsim), cytochrome c release, and subsequent death. More importantly, metformin, together with the PTP classical inhibitor cyclosporin A (CsA), strongly mitigated the activation of this apoptotic cascade. Furthermore, the general antioxidant N-acetyl-L: -cysteine also prevented etoposide-promoted neuronal death. In addition, metformin was shown to delay CsA-sensitive PTP opening in permeabilized neurons, as triggered by a calcium overload, probably through its mild inhibitory effect on the respiratory chain complex I. We conclude that (1) etoposide-induced neuronal death is partly attributable to PTP opening and the disruption of DeltaPsim, in association with the emergence of oxidative stress, and (2) metformin inhibits this PTP opening-driven commitment to death. We thus propose that metformin, beyond its antihyperglycemic role, can also function as a new therapeutic tool for diabetes-associated neurodegenerative disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Metformina/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/fisiología , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Ciclosporina/farmacología , Citocromos c/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/fisiopatología , Inhibidores Enzimáticos/farmacología , Etopósido/farmacología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Metformina/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar
7.
Antivir Ther ; 18(2): 193-204, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22894916

RESUMEN

BACKGROUND: Ubiquitous mitochondrial creatine kinase (uMtCK) accumulates as macroenzyme creatine kinase type 2 (macro CK2) in the serum of HIV-infected patients under a tenofovir disoproxil fumarate (TDF)-containing antiretroviral regimen. The genesis and clinical significance of this finding is unclear. METHODS: A prospective observational 5-year follow-up study was performed on those patients in which macro CK2 appearance was initially described ('TDF switch study' cohort). In addition, tenofovir (TFV), its prodrug TDF and its active, intracellular derivative TFV diphosphate (TDP) were tested in vitro for their effects on different key properties of uMtCK to clarify possible interactions of uMtCK with TFV compounds. RESULTS: In just under 5 years of continuous TDF treatment, only 4/12 (33%) patients remained macro CK2-positive, whereas 8/12 (66%) originally positive patients were macro CK2-negative at the end of follow-up. Prospective clinical follow-up data indicate that macro CK2 appearance under TDF is not associated with significant cell damage or occurrence of malignancies. A trend towards grade 1 hypophosphataemia suggests subclinical proximal tubular dysfunction in macro-CK2-positive patients, although it was not associated with a significant decrease in estimated glomerular filtration rate. In vitro, TFV, TDF and TDP did not interfere with uMtCK enzyme activity as competitive inhibitors or pseudo-substrates, but TFV and TDF stabilized the native uMtCK octameric structure in dilute solutions. CONCLUSIONS: Appearance of octameric uMtCK as macro CK2 in the serum of TDF-treated patients is suggested to result from a combination of low-level mitochondrial damage caused by subclinical renal tubular dysfunction together with possible compensatory uMtCK overexpression and a putative concomitant stabilization of uMtCK octamers by higher levels of TFV in proximal tubules.


Asunto(s)
Adenina/análogos & derivados , Fármacos Anti-VIH/farmacología , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Infecciones por VIH/metabolismo , Organofosfonatos/farmacología , Multimerización de Proteína , Adenina/farmacología , Adenina/uso terapéutico , Fármacos Anti-VIH/uso terapéutico , Catálisis/efectos de los fármacos , Forma Mitocondrial de la Creatina-Quinasa/sangre , Forma Mitocondrial de la Creatina-Quinasa/química , Estabilidad de Enzimas , Estudios de Seguimiento , Tasa de Filtración Glomerular/efectos de los fármacos , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Humanos , Hipofosfatemia/sangre , Organofosfonatos/uso terapéutico , Multimerización de Proteína/efectos de los fármacos , Tenofovir
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA