RESUMEN
Forests around the world are experiencing changes due to climate variability and human land use. How these changes interact and influence the vulnerability of forests are not well understood. In the eastern United States, well-documented anthropogenic disturbances and land-use decisions, such as logging and fire suppression, have influenced forest species assemblages, leading to a demographic shift from forests dominated by xeric species to those dominated by mesic species. Contemporarily, the climate has changed and is expected to continue to warm and produce higher evaporative demand, imposing stronger drought stress on forest communities. Here, we use an extensive network of tree-ring records from common hardwood species across ~100 sites and ~1300 trees in the eastern United States to examine the magnitude of growth response to both wet and dry climate extremes. We find that growth reductions during drought exceed the positive growth response to pluvials. Mesic species such as Liriodendron tulipifera and Acer saccharum, which are becoming more dominant, are more sensitive to drought than more xeric species, such as oaks (Quercus) and hickory (Carya), especially at moderate and extreme drought intensities. Although more extreme droughts produce a larger annual growth reduction, mild droughts resulted in the largest cumulative growth decreases due to their higher frequency. When using global climate model projections, all scenarios show drought frequency increasing substantially (3-9 times more likely) by 2100. Thus, the ongoing demographic shift toward more mesic species in the eastern United States combined with drier conditions results in larger drought-induced growth declines, suggesting that drought will have an even larger impact on aboveground carbon uptake in the future in the eastern United States.
Asunto(s)
Cambio Climático , Sequías , Bosques , Árboles , Árboles/crecimiento & desarrollo , Estados Unidos , ClimaRESUMEN
Distribution shifts are a common response in butterflies to a warming climate. Hong Kong has documented records of several new butterfly species in recent decades, comprising a high proportion of tropical species, some of which have successfully established. In this study, we examined possible drivers for the establishment of Euripus nyctelius Doubleday (Lepidoptera: Nymphalidae) by studying its thermal physiology and modeling current climate and future distributions projected by species distribution modeling (SDM). We found that E. nyctelius adults have a significantly higher critical thermal minimum than its local temperate relative, Hestina assimilis Linnaeus (Lepidoptera: Nymphalidae), suggesting a possible physiological constraint that may have been lifted with recent warming. SDMs provide further evidence that a shifting climate envelope may have improved the climate suitability for E. nyctelius in Hong Kong and South China-however, we cannot rule out the role of other drivers potentially influencing or driving range expansion, habitat change in particular. Conclusive attribution of warming-driven impacts for most tropical species is difficult or not possible due to a lack of historical or long-term data. Tropical insects will require a significant advancement in efforts to monitor species and populations across countries if we are to conclusively document climate-driven shifts in species distributions and manage the consequences of such species redistribution. Nevertheless, the warming climate and subsequent increased climatic suitability for tropical species in poleward areas, as shown here, is likely to result in future species redistribution events in subtropical and temperate ecosystems.