Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
New Phytol ; 238(4): 1593-1604, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36764921

RESUMEN

Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.


Asunto(s)
Oryza , Xanthomonas , Efectores Tipo Activadores de la Transcripción/genética , Xanthomonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Transporte Biológico , Enfermedades de las Plantas/microbiología , Oryza/genética
2.
New Phytol ; 223(1): 397-411, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30802965

RESUMEN

Interactions between Leptosphaeria maculans, causal agent of stem canker of oilseed rape, and its Brassica hosts are models of choice to explore the multiplicity of 'gene-for-gene' complementarities and how they diversified to increased complexity in the course of plant-pathogen co-evolution. Here, we support this postulate by investigating the AvrLm10 avirulence that induces a resistance response when recognized by the Brassica nigra resistance gene Rlm10. Using genome-assisted map-based cloning, we identified and cloned two AvrLm10 candidates as two genes in opposite transcriptional orientation located in a subtelomeric repeat-rich region of the genome. The AvrLm10 genes encode small secreted proteins and show expression profiles in planta similar to those of all L. maculans avirulence genes identified so far. Complementation and silencing assays indicated that both genes are necessary to trigger Rlm10 resistance. Three assays for protein-protein interactions showed that the two AvrLm10 proteins interact physically in vitro and in planta. Some avirulence genes are recognized by two distinct resistance genes and some avirulence genes hide the recognition specificities of another. Our L. maculans model illustrates an additional case where two genes located in opposite transcriptional orientation are necessary to induce resistance. Interestingly, orthologues exist for both L. maculans genes in other phytopathogenic species, with a similar genome organization, which may point to an important conserved effector function linked to heterodimerization of the two proteins.


Asunto(s)
Ascomicetos/genética , Brassica napus/genética , Brassica napus/microbiología , Epistasis Genética , Ascomicetos/patogenicidad , Secuencia Conservada/genética , ADN Intergénico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sitios Genéticos , Genoma Fúngico , Fenotipo , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Unión Proteica , Señales de Clasificación de Proteína , Virulencia
3.
New Phytol ; 219(2): 631-640, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29701899

RESUMEN

Plant growth and development is coordinated by complex networks of interacting hormones, and cross-talk between ethylene and auxin signaling is essential for a wide range of plant developmental processes. Nevertheless, the molecular links underlying the interaction between the two hormones remain poorly understood. In order to decipher the cross-talk between the Ethylene Response Factor Sl-ERF.B3 and Sl-IAA27, mediating ethylene and auxin signaling, respectively, we combined reverse genetic approaches, physiological methods, transactivation experiments and electrophoretic mobility shift assays. Sl-ERF.B3 is responsive to both ethylene and auxin and ectopic expression of its dominant repressor version (ERF.B3-SRDX) results in impaired sensitivity to auxin with phenotypes recalling those previously reported for Sl-IAA27 downregulated tomato lines. The expression of Sl-IAA27 is dramatically reduced in the ERF.B3-SRDX lines and Sl-ERF.B3 is shown to regulate the expression of Sl-IAA27 via direct binding to its promoter. The data support a model in which the ethylene-responsive Sl-ERF.B3 integrates ethylene and auxin signaling via regulation of the expression of the auxin signaling component Sl-IAA27. The study uncovers a molecular mechanism that links ethylene and auxin signaling in tomato.


Asunto(s)
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/metabolismo , Clorofila/metabolismo , Cruzamientos Genéticos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Etilenos/farmacología , Fertilización , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Dominantes , Genes de Plantas , Ácidos Indolacéticos/farmacología , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Plantones/metabolismo
4.
New Phytol ; 213(3): 1124-1132, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27748948

RESUMEN

Root colonization by arbuscular mycorrhizal (AM) fungi is a complex and finely tuned process. Previous studies have shown that, among other plant hormones, auxin plays a role in this process but the specific involvement of Aux/IAAs, the key regulators of auxin responses, is still unknown. In this study, we addressed the role of the tomato Sl-IAA27 during AM symbiosis by using Sl-IAA27-RNAi and pSL-IAA27::GUS stable tomato lines. The data show that Sl-IAA27 expression is up-regulated by the AM fungus and that silencing of Sl-IAA27 has a negative impact on AM colonization. Sl-IAA27-silencing resulted in down-regulation of three genes involved in strigolactone synthesis, NSP1, D27 and MAX1, and treatment of Sl-IAA27-silenced plants with the strigolactone analog GR24 complemented their mycorrhizal defect phenotype. Overall, the study identified an Aux/IAA gene as a new component of the signaling pathway controlling AM fungal colonization in tomato. This gene is proposed to control strigolactone biosynthesis via the regulation of NSP1.


Asunto(s)
Glomeromycota/fisiología , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Fenotipo , Raíces de Plantas/metabolismo , Interferencia de ARN
5.
J Exp Bot ; 67(13): 3845-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26994477

RESUMEN

The major role played by chloroplasts during light harvesting, energy production, redox homeostasis, and retrograde signalling processes has been extensively characterized. Beyond the obvious link between chloroplast functions in primary metabolism and as providers of photosynthesis-derived carbon sources and energy, a growing body of evidence supports a central role for chloroplasts as integrators of environmental signals and, more particularly, as key defence organelles. Here, we review the importance of these organelles as primary sites for the biosynthesis and transmission of pro-defence signals during plant immune responses. In addition, we highlight interorganellar communication as a crucial process for amplification of the immune response. Finally, molecular strategies used by microbes to manipulate, directly or indirectly, the production/function of defence-related signalling molecules and subvert chloroplast-based defences are also discussed.


Asunto(s)
Cloroplastos/fisiología , Inmunidad de la Planta , Transducción de Señal , Inmunidad Innata
6.
Plant Physiol ; 166(1): 281-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25096975

RESUMEN

Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Magnoliopsida/microbiología , MicroARNs/metabolismo , Micorrizas/fisiología , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/metabolismo , Simbiosis
7.
Plant Cell Physiol ; 55(11): 1969-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25231966

RESUMEN

Auxin is known to regulate cell division and cell elongation, thus controlling plant growth and development. Part of the auxin signaling pathway depends on the fine-tuned degradation of the auxin/indole acetic acid (Aux/IAA) transcriptional repressors. Recent evidence indicates that Aux/IAA proteins play a role in fruit development in tomato (Solanum lycopersicum Mill.), a model species for fleshy fruit development. We report here on the functional characterization of Sl-IAA17 during tomato fruit development. Silencing of Sl-IAA17 by an RNA interference (RNAi) strategy resulted in the production of larger fruit than the wild type. Histological analyses of the fruit organ and tissues demonstrated that this phenotype was associated with a thicker pericarp, rather than larger locules and/or a larger number of seeds. Microscopic analysis demonstrated that the higher pericarp thickness in Sl-IAA17 RNAi fruits was not due to a larger number of cells, but to the increase in cell size. Finally, we observed that the cell expansion in the transgenic fruits is tightly coupled with higher ploidy levels than in the wild type, suggesting a stimulation of the endoreduplication process. In conclusion, this work provides new insights into the function of the Aux/IAA pathway in fleshy fruit development, especially fruit size and cell size determination in tomato.


Asunto(s)
Endorreduplicación , Frutas/citología , Proteínas de Plantas/metabolismo , Proteínas Represoras/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/citología , Tamaño de los Órganos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poliploidía , Proteínas Represoras/genética
8.
J Exp Bot ; 65(4): 1013-23, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24399174

RESUMEN

Members of the TOPLESS gene family emerged recently as key players in gene repression in several mechanisms, especially in auxin perception. The TOPLESS genes constitute, in 'higher-plant' genomes, a small multigenic family comprising four to 11 members. In this study, this family was investigated in tomato, a model plant for Solanaceae species and fleshy fruits. Six open reading frames predicted to encode topless-like proteins (SlTPLs) containing the canonical domains (LisH, CTLH, and two WD40 repeats) were identified in the tomato genome. Nuclear localization was confirmed for all members of the SlTPL family with the exception SlTPL6, which localized at the cytoplasm and was excluded from the nucleus. SlTPL genes displayed distinctive expression patterns in different tomato organs, with SlTPL1 showing the highest levels of transcript accumulation in all tissues tested except in ripening fruit where SlTPL3 and SlTPL4 were the most prominently expressed. To gain insight into the specificity of the different TOPLESS paralogues, a protein-protein interaction map between TOPLESS and auxin/indole-3-acetic acid (Aux/IAA) proteins was built using a yeast two-hybrid approach. The PPI map enabled the distinction of two patterns: TOPLESS isoforms interacting with the majority of Aux/IAA, and isoforms with limited capacity for interaction with these protein partners. Interestingly, evolutionary analyses of the TOPLESS gene family revealed that the highly expressed isoforms (SlTPL1, SlTPL3, and SlTPL4) corresponded to the three TPL-related genes undergoing the strongest purifying selection, while the selection was much weaker for SlTPL6, which was expressed at a low level and encoded a protein lacking the capacity to interact with Aux/IAAs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Evolución Molecular , Perfilación de la Expresión Génica , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , ARN de Planta/genética , Proteínas Recombinantes de Fusión , Nicotiana/genética , Nicotiana/metabolismo , Técnicas del Sistema de Dos Híbridos
9.
Mol Plant Pathol ; 24(8): 914-931, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37128172

RESUMEN

Fungal effectors (small-secreted proteins) have long been considered as species or even subpopulation-specific. The increasing availability of high-quality fungal genomes and annotations has allowed the identification of trans-species or trans-genera families of effectors. Two avirulence effectors, AvrLm10A and AvrLm10B, of Leptosphaeria maculans, the fungus causing stem canker of oilseed rape, are members of such a large family of effectors. AvrLm10A and AvrLm10B are neighbouring genes, organized in divergent transcriptional orientation. Sequence searches within the L. maculans genome showed that AvrLm10A/AvrLm10B belong to a multigene family comprising five pairs of genes with a similar tail-to-tail organization. The two genes, in a pair, always had the same expression pattern and two expression profiles were distinguished, associated with the biotrophic colonization of cotyledons and/or petioles and stems. Of the two protein pairs further investigated, AvrLm10A_like1/AvrLm10B_like1 and AvrLm10A_like2/AvrLm10B_like2, the second one had the ability to physically interact, similarly to what was previously described for the AvrLm10A/AvrLm10B pair, and cross-interactions were also detected for two pairs. AvrLm10A homologues were identified in more than 30 Dothideomycete and Sordariomycete plant-pathogenic fungi. One of them, SIX5, is an effector from Fusarium oxysporum f. sp. lycopersici physically interacting with the avirulence effector Avr2. We found that AvrLm10A/SIX5 homologues were associated with at least eight distinct putative effector families, suggesting that AvrLm10A/SIX5 is able to cooperate with different effectors. These results point to a general role of the AvrLm10A/SIX5 proteins as "cooperating proteins", able to interact with diverse families of effectors whose encoding gene is co-regulated with the neighbouring AvrLm10A homologue.


Asunto(s)
Ascomicetos , Brassica napus , Fusarium , Ascomicetos/genética , Fusarium/genética , Proteínas/genética , Brassica napus/microbiología , Familia de Multigenes , Enfermedades de las Plantas/microbiología
10.
Elife ; 52016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27685353

RESUMEN

Proteases play crucial physiological functions in all organisms by controlling the lifetime of proteins. Here, we identified an atypical protease of the subtilase family [SBT5.2(b)] that attenuates the transcriptional activation of plant defence independently of its protease activity. The SBT5.2 gene produces two distinct transcripts encoding a canonical secreted subtilase [SBT5.2(a)] and an intracellular protein [SBT5.2(b)]. Concomitant to SBT5.2(a) downregulation, SBT5.2(b) expression is induced after bacterial inoculation. SBT5.2(b) localizes to endosomes where it interacts with and retains the defence-related transcription factor MYB30. Nuclear exclusion of MYB30 results in its reduced transcriptional activation and, thus, suppressed resistance. sbt5.2 mutants, with abolished SBT5.2(a) and SBT5.2(b) expression, display enhanced defence that is suppressed in a myb30 mutant background. Moreover, overexpression of SBT5.2(b), but not SBT5.2(a), in sbt5.2 plants reverts the phenotypes displayed by sbt5.2 mutants. Overall, we uncover a regulatory mode of the transcriptional activation of defence responses previously undescribed in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Subtilisinas/metabolismo , Activación Transcripcional , Retículo Endoplásmico/metabolismo , Unión Proteica , Subtilisinas/genética , Factores de Transcripción/metabolismo
11.
PLoS One ; 9(1): e84203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24427281

RESUMEN

BACKGROUND: The phytohormone auxin is involved in a wide range of developmental processes and auxin signaling is known to modulate the expression of target genes via two types of transcriptional regulators, namely, Aux/IAA and Auxin Response Factors (ARF). ARFs play a major role in transcriptional activation or repression through direct binding to the promoter of auxin-responsive genes. The present study aims at gaining better insight on distinctive structural and functional features among ARF proteins. RESULTS: Building on the most updated tomato (Solanum lycopersicon) reference genome sequence, a comprehensive set of ARF genes was identified, extending the total number of family members to 22. Upon correction of structural annotation inconsistencies, renaming the tomato ARF family members provided a consensus nomenclature for all ARF genes across plant species. In silico search predicted the presence of putative target site for small interfering RNAs within twelve Sl-ARFs while sequence analysis of the 5'-leader sequences revealed the presence of potential small uORF regulatory elements. Functional characterization carried out by transactivation assay partitioned tomato ARFs into repressors and activators of auxin-dependent gene transcription. Expression studies identified tomato ARFs potentially involved in the fruit set process. Genome-wide expression profiling using RNA-seq revealed that at least one third of the gene family members display alternative splicing mode of regulation during the flower to fruit transition. Moreover, the regulation of several tomato ARF genes by both ethylene and auxin, suggests their potential contribution to the convergence mechanism between the signaling pathways of these two hormones. CONCLUSION: All together, the data bring new insight on the complexity of the expression control of Sl-ARF genes at the transcriptional and post-transcriptional levels supporting the hypothesis that these transcriptional mediators might represent one of the main components that enable auxin to regulate a wide range of physiological processes in a highly specific and coordinated manner.


Asunto(s)
Empalme Alternativo , Familia de Multigenes , Proteínas de Plantas/genética , Procesamiento Postranscripcional del ARN , Solanum lycopersicum/genética , Regiones no Traducidas 5' , Análisis por Conglomerados , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Sistemas de Lectura Abierta , Especificidad de Órganos/genética , Filogenia , Interferencia de ARN , Estabilidad del ARN , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA