Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916595

RESUMEN

Peroxymonocarbonate (HCO4-/HOOCO2-) is produced by the reversible reaction of CO2/HCO3- with H2O2 (K = 0.33 M-1, pH 7.0). Although produced in low yields at physiological pHs and H2O2 and CO2/HCO3- concentrations, HCO4- oxidizes most nucleophiles with rate constants 10 to 100 times higher than those of H2O2. Boronate probes are known examples because HCO4- reacts with coumarin-7-boronic acid pinacolate ester (CBE) with a rate constant that is approximately 100 times higher than that of H2O2 and the same holds for fluorescein-boronate (Fl-B) as reported here. Therefore, we tested whether boronate probes could provide evidence for HCO4- formation under biologically relevant conditions. Glucose/glucose oxidase/catalase were adjusted to produce low steady-state H2O2 concentrations (2-18 µM) in Pi buffer at pH 7.4 and 37 °C. Then, CBE (100 µM) was added and fluorescence increase was monitored with time. The results showed that each steady-state H2O2 concentration reacted more rapidly (∼30%) in the presence of CO2/HCO3- (25 mM) than in its absence, and the data permitted the calculation of consistent rate constants. Also, RAW 264.7 macrophages were activated with phorbol 12-myristate 13-acetate (PMA) (1 µg/mL) at pH 7.4 and 37 °C to produce a time-dependent H2O2 concentration (8.0 ± 2.5 µM after 60 min). The media contained 0, 21.6, or 42.2 mM HCO3- equilibrated with 0, 5, or 10% CO2, respectively. In the presence of CBE or Fl-B (30 µM), a time-dependent increase in the fluorescence of the bulk solution was observed, which was higher in the presence of CO2/HCO3- in a concentration-dependent manner. The Fl-B samples were also examined by fluorescence microscopy. Our results demonstrated that mammalian cells produce HCO4- and boronate probes can evidence and distinguish it from H2O2 under biologically relevant concentrations of H2O2 and CO2/HCO3-.

2.
Inorg Chem ; 60(21): 15835-15845, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34014639

RESUMEN

Dinitrosyl iron complexes (DNICs) are spontaneously and rapidly generated in cells. Their assembly requires nitric oxide (NO), biothiols, and nonheme iron, either labile iron or iron-sulfur clusters. Despite ubiquitous detection by electron paramagnetic resonance in NO-producing cells, the DNIC's chemical biology remains only partially understood. In this Forum Article, we address the reaction mechanisms for endogenous DNIC formation, with a focus on a labile iron pool as the iron source. The capability of DNICs to promote S-nitrosation is discussed in terms of S-nitrosothiol generation associated with the formation and chemical reactivity of DNICs. We also highlight how elucidation of the chemical reactivity and the dynamics of DNICs combined with the development of detection/quantification methods can provide further information regarding their participation in physiological and pathological processes.


Asunto(s)
Hierro
3.
J Biol Chem ; 294(38): 14055-14067, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31366734

RESUMEN

2-Cys peroxiredoxins (Prxs) rapidly reduce H2O2, thereby acting as antioxidants and also as sensors and transmitters of H2O2 signals in cells. Interestingly, eukaryotic 2-Cys Prxs lose their peroxidase activity at high H2O2 levels. Under these conditions, H2O2 oxidizes the sulfenic acid derivative of the Prx peroxidatic Cys (CPSOH) to the sulfinate (CPSO2-) and sulfonated (CPSO3-) forms, redirecting the CPSOH intermediate from the catalytic cycle to the hyperoxidation/inactivation pathway. The susceptibility of 2-Cys Prxs to hyperoxidation varies greatly and depends on structural features that affect the lifetime of the CPSOH intermediate. Among the human Prxs, Prx1 has an intermediate susceptibility to H2O2 and was selected here to investigate the effect of a physiological concentration of HCO3-/CO2 (25 mm) on its hyperoxidation. Immunoblotting and kinetic and MS/MS experiments revealed that HCO3-/CO2 increases Prx1 hyperoxidation and inactivation both in the presence of excess H2O2 and during enzymatic (NADPH/thioredoxin reductase/thioredoxin) and chemical (DTT) turnover. We hypothesized that the stimulating effect of HCO3-/CO2 was due to HCO4-, a peroxide present in equilibrated solutions of H2O2 and HCO3-/CO2 Indeed, additional experiments and calculations uncovered that HCO4- oxidizes CPSOH to CPSO2- with a second-order rate constant 2 orders of magnitude higher than that of H2O2 ((1.5 ± 0.1) × 105 and (2.9 ± 0.2) × 103 m-1·s-1, respectively) and that HCO4- is 250 times more efficient than H2O2 at inactivating 1% Prx1 per turnover. The fact that the biologically ubiquitous HCO3-/CO2 pair stimulates Prx1 hyperoxidation and inactivation bears relevance to Prx1 functions beyond its antioxidant activity.


Asunto(s)
Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Secuencia de Aminoácidos , Antioxidantes/química , Antioxidantes/metabolismo , Bicarbonatos/química , Bicarbonatos/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Catálisis , Cisteína/química , Cisteína/metabolismo , Humanos , Cinética , NADP/química , NADP/metabolismo , Oxidación-Reducción , Peróxidos/metabolismo , Espectrometría de Masas en Tándem/métodos
4.
Proc Natl Acad Sci U S A ; 114(8): E1326-E1335, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28179568

RESUMEN

The Trypanosoma cruzi ascorbate peroxidase is, by sequence analysis, a hybrid type A member of class I heme peroxidases [TcAPx-cytochrome c peroxidase (CcP)], suggesting both ascorbate (Asc) and cytochrome c (Cc) peroxidase activity. Here, we show that the enzyme reacts fast with H2O2 (k = 2.9 × 107 M-1⋅s-1) and catalytically decomposes H2O2 using Cc as the reducing substrate with higher efficiency than Asc (kcat/Km = 2.1 × 105 versus 3.5 × 104 M-1⋅s-1, respectively). Visible-absorption spectra of purified recombinant TcAPx-CcP after H2O2 reaction denote the formation of a compound I-like product, characteristic of the generation of a tryptophanyl radical-cation (Trp233•+). Mutation of Trp233 to phenylalanine (W233F) completely abolishes the Cc-dependent peroxidase activity. In addition to Trp233•+, a Cys222-derived radical was identified by electron paramagnetic resonance spin trapping, immunospin trapping, and MS analysis after equimolar H2O2 addition, supporting an alternative electron transfer (ET) pathway from the heme. Molecular dynamics studies revealed that ET between Trp233 and Cys222 is possible and likely to participate in the catalytic cycle. Recognizing the ability of TcAPx-CcP to use alternative reducing substrates, we searched for its subcellular localization in the infective parasite stages (intracellular amastigotes and extracellular trypomastigotes). TcAPx-CcP was found closely associated with mitochondrial membranes and, most interestingly, with the outer leaflet of the plasma membrane, suggesting a role at the host-parasite interface. TcAPx-CcP overexpressers were significantly more infective to macrophages and cardiomyocytes, as well as in the mouse model of Chagas disease, supporting the involvement of TcAPx-CcP in pathogen virulence as part of the parasite antioxidant armamentarium.


Asunto(s)
Hemo/metabolismo , Parásitos/metabolismo , Parásitos/patogenicidad , Peroxidasa/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidad , Virulencia/fisiología , Animales , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Grupo Citocromo c/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Transporte de Electrón/fisiología , Femenino , Peróxido de Hidrógeno/metabolismo , Cinética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida/métodos , Oxidación-Reducción , Fenilalanina/metabolismo , Triptófano/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(2): E132-E141, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028230

RESUMEN

Organic hydroperoxide resistance (Ohr) enzymes are unique Cys-based, lipoyl-dependent peroxidases. Here, we investigated the involvement of Ohr in bacterial responses toward distinct hydroperoxides. In silico results indicated that fatty acid (but not cholesterol) hydroperoxides docked well into the active site of Ohr from Xylella fastidiosa and were efficiently reduced by the recombinant enzyme as assessed by a lipoamide-lipoamide dehydrogenase-coupled assay. Indeed, the rate constants between Ohr and several fatty acid hydroperoxides were in the 107-108 M-1⋅s-1 range as determined by a competition assay developed here. Reduction of peroxynitrite by Ohr was also determined to be in the order of 107 M-1⋅s-1 at pH 7.4 through two independent competition assays. A similar trend was observed when studying the sensitivities of a ∆ohr mutant of Pseudomonas aeruginosa toward different hydroperoxides. Fatty acid hydroperoxides, which are readily solubilized by bacterial surfactants, killed the ∆ohr strain most efficiently. In contrast, both wild-type and mutant strains deficient for peroxiredoxins and glutathione peroxidases were equally sensitive to fatty acid hydroperoxides. Ohr also appeared to play a central role in the peroxynitrite response, because the ∆ohr mutant was more sensitive than wild type to 3-morpholinosydnonimine hydrochloride (SIN-1 , a peroxynitrite generator). In the case of H2O2 insult, cells treated with 3-amino-1,2,4-triazole (a catalase inhibitor) were the most sensitive. Furthermore, fatty acid hydroperoxide and SIN-1 both induced Ohr expression in the wild-type strain. In conclusion, Ohr plays a central role in modulating the levels of fatty acid hydroperoxides and peroxynitrite, both of which are involved in host-pathogen interactions.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/fisiología , Ácidos Grasos/química , Peróxido de Hidrógeno/química , Nitratos/química , Pseudomonas aeruginosa/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Interacciones Huésped-Patógeno , Peróxido de Hidrógeno/metabolismo , Simulación del Acoplamiento Molecular , Nitratos/metabolismo
6.
J Biol Chem ; 293(4): 1450-1465, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29191937

RESUMEN

Protein-disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, such as cellular signaling and responses to cell-damaging events. PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants, and its dysfunction has been associated with several diseases in which oxidative stress plays a role. Because the kinetics and products of the reaction of these oxidants with PDI remain incompletely characterized, we investigated the reaction of PDI with the biological oxidant peroxynitrite. First, by determining the rate constant of the oxidation of PDI's redox-active Cys residues (Cys53 and Cys397) by hydrogen peroxide (k = 17.3 ± 1.3 m-1 s-1 at pH 7.4 and 25 °C), we established that the measured decay of the intrinsic PDI fluorescence is appropriate for kinetic studies. The reaction of these PDI residues with peroxynitrite was considerably faster (k = (6.9 ± 0.2) × 104 m-1 s-1), and both Cys residues were kinetically indistinguishable. Limited proteolysis, kinetic simulations, and MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which reacted with the resolving thiols at the active sites to produce disulfides (i.e. Cys53-Cys56 and Cys397-Cys400). A fraction of peroxynitrite, however, decayed to radicals that hydroxylated and nitrated other active-site residues (Trp52, Trp396, and Tyr393). Excess peroxynitrite promoted further PDI oxidation, nitration, inactivation, and covalent oligomerization. We conclude that these PDI modifications may contribute to the pathogenic mechanism of several diseases associated with dysfunctional PDI.


Asunto(s)
Ácido Peroxinitroso/química , Procolágeno-Prolina Dioxigenasa/química , Proteína Disulfuro Isomerasas/química , Tolueno/análogos & derivados , Secuencias de Aminoácidos , Humanos , Oxidación-Reducción , Tolueno/química
7.
J Biol Chem ; 293(22): 8530-8542, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29661935

RESUMEN

The ubiquitous cellular labile iron pool (LIP) is often associated with the production of the highly reactive hydroxyl radical, which forms through a redox reaction with hydrogen peroxide. Peroxynitrite is a biologically relevant peroxide produced by the recombination of nitric oxide and superoxide. It is a strong oxidant that may be involved in multiple pathological conditions, but whether and how it interacts with the LIP are unclear. Here, using fluorescence spectroscopy, we investigated the interaction between the LIP and peroxynitrite by monitoring peroxynitrite-dependent accumulation of nitrosated and oxidized fluorescent intracellular indicators. We found that, in murine macrophages, removal of the LIP with membrane-permeable iron chelators sustainably accelerates the peroxynitrite-dependent oxidation and nitrosation of these indicators. These observations could not be reproduced in cell-free assays, indicating that the chelator-enhancing effect on peroxynitrite-dependent modifications of the indicators depended on cell constituents, presumably including LIP, that react with these chelators. Moreover, neither free nor ferrous-complexed chelators stimulated intracellular or extracellular oxidative and nitrosative chemistries. On the basis of these results, LIP appears to be a relevant and competitive cellular target of peroxynitrite or its derived oxidants, and thereby it reduces oxidative processes, an observation that may change the conventional notion that the LIP is simply a cellular source of pro-oxidant iron.


Asunto(s)
Quelantes del Hierro/química , Hierro/farmacología , Macrófagos/patología , Óxido Nítrico/metabolismo , Oxidantes/química , Ácido Peroxinitroso/química , Superóxidos/química , Animales , Células Cultivadas , Quelantes del Hierro/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Nitrosación , Oxidantes/metabolismo , Oxidación-Reducción , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo
8.
Inorg Chem ; 58(19): 13446-13456, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31535856

RESUMEN

Dinitrosyl iron complexes (DNICs) are ubiquitous in mammalian cells and tissues producing nitric oxide (NO) and have been argued to play key physiological and pathological roles. Nonetheless, the mechanism and dynamics of DNIC formation in aqueous media remain only partially understood. Here, we report a stopped-flow kinetics and density functional theory (DFT) investigation of the reaction of NO with ferrous ions and the low molecular weight thiols glutathione (GSH) and cysteine (CysSH) as well as the peptides WCGPC and WCGPY to produce DNICs in pH 7.4 aqueous media. With each thiol, a two-stage reaction pattern is observed. The first stage involves several rapidly established pre-equilibria leading to a ferrous intermediate concluded to have the composition FeII(NO)(RS)2(H2O)x (C). In the second stage, C undergoes rate-limiting, unimolecular autoreduction to give thiyl radical (RS•) plus the mononitrosyl Fe(I) complex FeI(NO)(RS)(H2O)x following the reactivity order of CysSH > WCGPC > WCGPY > GSH. Time course simulations using the experimentally determined kinetics parameters demonstrate that, at a NO flux characteristic of inflammation, DNICs will be rapidly formed from intracellular levels of ferrous iron and thiols. Furthermore, the proposed mechanism offers a novel pathway for S-nitroso thiol (RSNO) formation in a biological environment.

9.
J Biol Chem ; 292(21): 8705-8715, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28348082

RESUMEN

Urate hydroperoxide is a product of the oxidation of uric acid by inflammatory heme peroxidases. The formation of urate hydroperoxide might be a key event in vascular inflammation, where there is large amount of uric acid and inflammatory peroxidases. Urate hydroperoxide oxidizes glutathione and sulfur-containing amino acids and is expected to react fast toward reactive thiols from peroxiredoxins (Prxs). The kinetics for the oxidation of the cytosolic 2-Cys Prx1 and Prx2 revealed that urate hydroperoxide oxidizes these enzymes at rates comparable with hydrogen peroxide. The second-order rate constants of these reactions were 4.9 × 105 and 2.3 × 106 m-1 s-1 for Prx1 and Prx2, respectively. Kinetic and simulation data suggest that the oxidation of Prx2 by urate hydroperoxide occurs by a three-step mechanism, where the peroxide reversibly associates with the enzyme; then it oxidizes the peroxidatic cysteine, and finally, the rate-limiting disulfide bond is formed. Of relevance, the disulfide bond formation was much slower in Prx2 (k3 = 0.31 s-1) than Prx1 (k3 = 14.9 s-1). In addition, Prx2 was more sensitive than Prx1 to hyperoxidation caused by both urate hydroperoxide and hydrogen peroxide. Urate hydroperoxide oxidized Prx2 from intact erythrocytes to the same extent as hydrogen peroxide. Therefore, Prx1 and Prx2 are likely targets of urate hydroperoxide in cells. Oxidation of Prxs by urate hydroperoxide might affect cell function and be partially responsible for the pro-oxidant and pro-inflammatory effects of uric acid.


Asunto(s)
Eritrocitos/enzimología , Peróxidos/química , Peroxirredoxinas/química , Ácido Úrico/análogos & derivados , Disulfuros/química , Disulfuros/metabolismo , Humanos , Cinética , Oxidación-Reducción , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Ácido Úrico/química , Ácido Úrico/metabolismo
10.
Bioorg Med Chem Lett ; 26(16): 3988-93, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27426865

RESUMEN

The development of resistance to antibiotics by microorganisms is a major problem for the treatment of bacterial infections worldwide, and therefore, it is imperative to study new scaffolds that are potentially useful in the development of new antibiotics. In this regard, we propose the design, synthesis and biological evaluation of hybrid sulfonylhydrazone bioisosters/furoxans with potential antibacterial (Escherichia coli) activity. The most active compound of the series, (E)-3-methyl-4-((2-tosylhydrazono)methyl)-1,2,5-oxadiazole 2-oxide, with a MIC=0.36µM, was not cytotoxic when tested on Vero cells (IC50>100µM). To complement the in vitro screening, we also studied the interaction of the test compounds with ß-ketoacyl acyl carrier protein synthase (FabH), the target for the parent compounds, and we observed three important hydrogen-bonding interactions with two important active site residues in the catalytic site of the enzyme, providing complementary evidence to support the target of the new hybrid molecules.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Antibacterianos/química , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/enzimología , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Acetiltransferasas/metabolismo , Animales , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Sitios de Unión , Candida albicans/efectos de los fármacos , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/toxicidad , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/metabolismo , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Oxadiazoles/toxicidad , Electricidad Estática , Relación Estructura-Actividad , Células Vero
11.
Biochemistry ; 54(18): 2841-50, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25865416

RESUMEN

Lipid peroxidation is a well-known process that has been implicated in many diseases. Recent evidence has shown that mitochondrial cholesterol levels are increased under specific conditions, making it an important target for peroxidation inside the mitochondria. Cholesterol peroxidation generates, as primary products, several hydroperoxides (ChOOH), which can react with transition metals and metalloproteins. In this sense, cytochrome c (CYTC), a heme protein largely found in the mitochondria, becomes a candidate to react with ChOOH. Using CYTC associated with SDS micelles to mimic mitochondrial conditions, we show that ChOOH induces dose-dependent CYTC Soret band bleaching, indicating that it is using ChOOH as a substrate. This reaction leads to protein oligomerization, suggesting the formation of a protein radical that, subsequently, recombines, giving dimers, trimers, and tetramers. EPR experiments confirmed the production of carbon-centered radicals from both protein and lipid in the presence of ChOOH. Similar results were obtained with linoleic acid hydroperoxides (LAOOH). In addition, replacing SDS micelles by cardiolipin-containing liposomes as the mitochondrial mimetic led to similar results with either ChOOH or LAOOH. Importantly, kinetic experiments show that CYTC bleaching is faster with ChOOH than with H2O2, suggesting that these hydroperoxides could be relevant substrates for CYTC peroxidase-like activity in biological media. Altogether, these results show that CYTC induces homolytic cleavage of lipid-derived hydroperoxides, producing lipid and protein radicals.


Asunto(s)
Colesterol/análogos & derivados , Citocromos c/química , Radicales Libres/química , Animales , Bovinos , Colesterol/química , Peróxido de Hidrógeno/química , Cinética , Ácidos Linoleicos/química , Peroxidación de Lípido , Peróxidos Lipídicos/química , Liposomas , Micelas , Polimerizacion , Piridinas/química , Dodecil Sulfato de Sodio
12.
J Biol Chem ; 289(44): 30690-30701, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25237191

RESUMEN

The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1(WT) and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp(32) residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp(32) residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1(WT) and hSOD1(G93A) mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp(32) residue in the process. The results showed that Trp(32) residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp(32) residue (bovine SOD1 and hSOD1(W32F) mutant). The results support a role for the oxidation products of the hSOD1-Trp(32) residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1.


Asunto(s)
Superóxido Dismutasa/química , Triptófano/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bicarbonatos/química , Humanos , Datos de Secuencia Molecular , Oxidación-Reducción , Agregación Patológica de Proteínas , Carbonilación Proteica , Multimerización de Proteína , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
13.
Arch Biochem Biophys ; 557: 72-81, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24956592

RESUMEN

Protein disulfide isomerase (PDI) is a dithiol-disulfide oxidoreductase that has essential roles in redox protein folding. PDI has been associated with protective roles against protein aggregation, a hallmark of neurodegenerative diseases. Intriguingly, PDI has been detected in the protein inclusions found in the central nervous system of patients of neurodegenerative diseases. Oxidized proteins are also consistently detected in such patients, but the agents that promote these oxidations remain undefined. A potential trigger of protein oxidation is the bicarbonate-dependent peroxidase activity of the human enzyme superoxide dismutase 1 (hSOD1). Therefore, we examined the effects of this activity on PDI structure and activity. The results showed that PDI was oxidized to radicals that lead to PDI inactivation and aggregation. The aggregates are huge and apparently produced by covalent cross-links. Spin trapping experiments coupled with MS analysis indicated that at least 3 residues of PDI are oxidized to tyrosyl radicals (Y(63), Y(116) and Y(327)). Parallel experiments showed that PDI is also oxidized to radicals, inactivated and aggregated by the action of photolytically generated carbonate radical and by UV light. PDI is prone to inactivation and aggregation by one-electron oxidants and UV light probably because of its high content of aromatic amino acids.


Asunto(s)
Bicarbonatos/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Superóxido Dismutasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Humanos , Espectrometría de Masas/métodos , Oxidación-Reducción , Rayos Ultravioleta
14.
Biochem J ; 455(1): 37-46, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23855710

RESUMEN

Tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of various diseases via mechanisms that are not completely understood. Recently, we reported that high doses of tempol moderately increased survival in a rat model of ALS (amyotrophic lateral sclerosis) while decreasing the levels of oxidized hSOD1 (human Cu,Zn-superoxide dismutase) in spinal cord tissues. To better understand such a protective effect in vivo, we studied the effects of tempol on hSOD1 oxidation in vitro. The chosen oxidizing system was the bicarbonate-dependent peroxidase activity of hSOD1 that consumes H2O2 to produce carbonate radical, which oxidizes the enzyme. Most of the experiments were performed with 30 µM hSOD1, 25 mM bicarbonate, 1 mM H2O2, 0.1 mM DTPA (diethylenetriaminepenta-acetic acid) and 50 mM phosphate buffer at a final pH of 7.4. The results showed that tempol (5-75 µM) does not inhibit hSOD1 turnover, but decreases its resulting oxidation to carbonylated and covalently dimerized forms. Tempol acted by scavenging the carbonate radical produced and by recombining with hSOD1-derived radicals. As a result, tempol was consumed nearly stoichiometrically with hSOD1 monomers. MS analyses of turned-over hSOD1 and of a related peptide oxidized by the carbonate radical indicated the formation of a relatively unstable adduct between tempol and hSOD1-Trp32•. Tempol consumption by the bicarbonate-dependent peroxidase activity of hSOD1 may be one of the reasons why high doses of tempol were required to afford protection in an ALS rat model. Overall, the results of the present study confirm that tempol can protect against protein oxidation and the ensuing consequences.


Asunto(s)
Bicarbonatos/química , Óxidos N-Cíclicos/química , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno/química , Péptidos/química , Peroxidasas/química , Superóxido Dismutasa/química , Bicarbonatos/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Pruebas de Enzimas , Escherichia coli/enzimología , Escherichia coli/genética , Radicales Libres/química , Humanos , Oxidación-Reducción , Péptidos/antagonistas & inhibidores , Péptidos/metabolismo , Peroxidasas/antagonistas & inhibidores , Peroxidasas/metabolismo , Carbonilación Proteica , Multimerización de Proteína , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Marcadores de Spin , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
15.
Chem Res Toxicol ; 25(5): 975-89, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22449080

RESUMEN

Nitric oxide (NO(•); nitrogen monoxide) is known to be a critical regulator of cell and tissue function through mechanisms that utilize its unique physicochemical properties as a small and uncharged free radical with limited reactivity. Here, the basic chemistry and biochemistry of NO(•) are summarized through the description of its chemical reactivity, biological sources, physiological and pathophysiological levels, and cellular transport. The complexity of the interactions of NO(•) with biotargets, which vary from irreversible second-order reactions to reversible formation of nonreactive and reactive nitrosyl complexes, is noted. Emphasis is placed on the kinetics and physiological consequences of the reactions of NO(•) with its better characterized biotargets. These targets are soluble guanylate cyclase (sCG), oxyhemoglobin/hemoglobin (HbO(2)/Hb) and cytochrome c oxidase (CcOx), all of which are ferrous heme proteins that react with NO(•) with second-order rate constants approaching the diffusion limit (k(on) approximately 10(7) to 10(8) M(-1) s(-1)). Likewise, the biotarget responsible for the most described pathophysiological actions of NO(•) is the superoxide anion radical (O(2)(•-)), which reacts with NO(•) in a diffusion-controlled process (k approximately 10(10) M(-1) s(-1)). The reactions of NO(•) with proteins containing iron-sulfur clusters ([FeS]) remain little studied and the reported rate constants of the first steps of these reactions are considerable (k approximately 10(5) M(-1) s(-1)). Not surprisingly, the interactions of proteins containing iron-sulfur clusters with NO(•) remain ambiguous and have been associated with both physiological and pathophysiological effects. Overall, it is emphasized that any claimed biological action of NO(•) should be connected with its interaction with kinetically relevant biotargets. Although reactivity toward biotargets is only one of the factors contributing to cellular and tissue responses mediated by short-lived species, such as NO(•) and other oxygen-derived species, it is a critical factor. Therefore, taking reactivity into account is important to advancing our knowledge on redox signaling mechanisms.


Asunto(s)
Óxido Nítrico/química , Óxido Nítrico/metabolismo , Animales , Transporte Biológico , Hemoproteínas/metabolismo , Humanos , Proteínas Hierro-Azufre/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
16.
Biochem J ; 439(3): 423-31, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21749327

RESUMEN

The nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of inflammation by mechanisms that are not completely understood. MPO (myeloperoxidase), which plays a fundamental role in oxidant production by neutrophils, is an important target for anti-inflammatory action. By amplifying the oxidative potential of H2O2, MPO produces hypochlorous acid and radicals through the oxidizing intermediates MPO-I [MPO-porphyrin•+-Fe(IV)=O] and MPO-II [MPO-porphyrin-Fe(IV)=O]. Previously, we reported that tempol reacts with MPO-I and MPO-II with second-order rate constants similar to those of tyrosine. However, we noticed that tempol inhibits the chlorinating activity of MPO, in contrast with tyrosine. Thus we studied the inhibition of MPO-mediated taurine chlorination by tempol at pH 7.4 and re-determined the kinetic constants of the reactions of tempol with MPO-I (k=3.5×105 M-1·s-1) and MPO-II, the kinetics of which indicated a binding interaction (K=2.0×10-5 M; k=3.6×10-2 s-1). Also, we showed that tempol reacts extremely slowly with hypochlorous acid (k=0.29 and 0.054 M-1·s-1 at pH 5.4 and 7.4 respectively). The results demonstrated that tempol acts mostly as a reversible inhibitor of MPO by trapping it as MPO-II and the MPO-II-tempol complex, which are not within the chlorinating cycle. After turnover, a minor fraction of MPO is irreversibly inactivated, probably due to its reaction with the oxammonium cation resulting from tempol oxidation. Kinetic modelling indicated that taurine reacts with enzyme-bound hypochlorous acid. Our investigation complements a comprehensive study reported while the present study was underway


Asunto(s)
Óxidos N-Cíclicos/farmacocinética , Halogenación/efectos de los fármacos , Halogenación/fisiología , Peroxidasa/antagonistas & inhibidores , Peroxidasa/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacocinética , Humanos , Cinética , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Peroxidasa/farmacocinética , Marcadores de Spin
17.
Biochim Biophys Acta ; 1802(5): 462-71, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20097285

RESUMEN

Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multi-factorial and remain unclear. Here we examined DNA damage, p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly(93)-->Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Apoptosis , Cromatina/metabolismo , Daño del ADN , Neuroblastoma/metabolismo , Superóxido Dismutasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Esclerosis Amiotrófica Lateral/patología , Núcleo Celular/enzimología , Núcleo Celular/patología , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Técnicas para Inmunoenzimas , Peroxidación de Lípido , Superóxido Dismutasa-1 , Células Tumorales Cultivadas
18.
Proc Natl Acad Sci U S A ; 105(24): 8191-6, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18499804

RESUMEN

Despite the therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetra-methyl-1-piperidinyloxy) and related nitroxides as antioxidants, their effects on peroxidase-mediated protein tyrosine nitration remain unexplored. This posttranslational protein modification is a biomarker of nitric oxide-derived oxidants, and, relevantly, it parallels tissue injury in animal models of inflammation and is attenuated by tempol treatment. Here, we examine tempol effects on ribonuclease (RNase) nitration mediated by myeloperoxidase (MPO), a mammalian enzyme that plays a central role in various inflammatory processes. Some experiments were also performed with horseradish peroxidase (HRP). We show that tempol efficiently inhibits peroxidase-mediated RNase nitration. For instance, 10 muM tempol was able to inhibit by 90% the yield of 290 muM 3-nitrotyrosine produced from 370 muM RNase. The effect of tempol was not completely catalytic because part of it was consumed by recombination with RNase-tyrosyl radicals. The second-order rate constant of the reaction of tempol with MPO compound I and II were determined by stopped-flow kinetics as 3.3 x 10(6) and 2.6 x 10(4) M(-1) s(-1), respectively (pH 7.4, 25 degrees C); the corresponding HRP constants were orders of magnitude smaller. Time-dependent hydrogen peroxide and nitrite consumption and oxygen production in the incubations were quantified experimentally and modeled by kinetic simulations. The results indicate that tempol inhibits peroxidase-mediated RNase nitration mainly because of its reaction with nitrogen dioxide to produce the oxammonium cation, which, in turn, recycles back to tempol by reacting with hydrogen peroxide and superoxide radical to produce oxygen and regenerate nitrite. The implications for nitroxide antioxidant mechanisms are discussed.


Asunto(s)
Antioxidantes/farmacología , Óxidos N-Cíclicos/farmacología , Nitratos/metabolismo , Peroxidasa/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ribonucleasas/metabolismo , Antioxidantes/química , Catálisis/efectos de los fármacos , Óxidos N-Cíclicos/química , Humanos , Cinética , Nitratos/química , Peroxidasa/química , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ribonucleasas/química , Marcadores de Spin , Tirosina/química , Tirosina/metabolismo
19.
Biophys Rev ; 13(6): 889-891, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35059013

RESUMEN

High carbon dioxide tensions (hypercapnia) are toxic to mammals by both pH-dependent and pH-independent mechanisms that remain partially understood. Relevantly, carbon dioxide reacts with biologically ubiquitous oxygen metabolites such as peroxynitrite and hydrogen peroxide to produce carbonate radical and peroxymonocarbonate, respectively. These metabolites are redox active making it timely to discuss the potential role of carbon dioxide redox metabolites in oxidative eustress and oxidative distress conditions.

20.
Antioxid Redox Signal ; 35(12): 1016-1080, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33726509

RESUMEN

Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.


Asunto(s)
Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Oxidación-Reducción , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA