Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267259

RESUMEN

Sound texture perception takes advantage of a hierarchy of time-averaged statistical features of acoustic stimuli, but much remains unclear about how these statistical features are processed along the auditory pathway. Here, we compared the neural representation of sound textures in the inferior colliculus (IC) and auditory cortex (AC) of anesthetized female rats. We recorded responses to texture morph stimuli that gradually add statistical features of increasingly higher complexity. For each texture, several different exemplars were synthesized using different random seeds. An analysis of transient and ongoing multiunit responses showed that the IC units were sensitive to every type of statistical feature, albeit to a varying extent. In contrast, only a small proportion of AC units were overtly sensitive to any statistical features. Differences in texture types explained more of the variance of IC neural responses than did differences in exemplars, indicating a degree of "texture type tuning" in the IC, but the same was, perhaps surprisingly, not the case for AC responses. We also evaluated the accuracy of texture type classification from single-trial population activity and found that IC responses became more informative as more summary statistics were included in the texture morphs, while for AC population responses, classification performance remained consistently very low. These results argue against the idea that AC neurons encode sound type via an overt sensitivity in neural firing rate to fine-grain spectral and temporal statistical features.


Asunto(s)
Corteza Auditiva , Colículos Inferiores , Femenino , Ratas , Animales , Vías Auditivas/fisiología , Colículos Inferiores/fisiología , Mesencéfalo/fisiología , Sonido , Corteza Auditiva/fisiología , Estimulación Acústica/métodos , Percepción Auditiva/fisiología
2.
J Neurosci ; 43(44): 7361-7375, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37684031

RESUMEN

Past reward associations may be signaled from different sensory modalities; however, it remains unclear how different types of reward-associated stimuli modulate sensory perception. In this human fMRI study (female and male participants), a visual target was simultaneously presented with either an intra- (visual) or a cross-modal (auditory) cue that was previously associated with rewards. We hypothesized that, depending on the sensory modality of the cues, distinct neural mechanisms underlie the value-driven modulation of visual processing. Using a multivariate approach, we confirmed that reward-associated cues enhanced the target representation in early visual areas and identified the brain valuation regions. Then, using an effective connectivity analysis, we tested three possible patterns of connectivity that could underlie the modulation of the visual cortex: a direct pathway from the frontal valuation areas to the visual areas, a mediated pathway through the attention-related areas, and a mediated pathway that additionally involved sensory association areas. We found evidence for the third model demonstrating that the reward-related information in both sensory modalities is communicated across the valuation and attention-related brain regions. Additionally, the superior temporal areas were recruited when reward was cued cross-modally. The strongest dissociation between the intra- and cross-modal reward-driven effects was observed at the level of the feedforward and feedback connections of the visual cortex estimated from the winning model. These results suggest that, in the presence of previously rewarded stimuli from different sensory modalities, a combination of domain-general and domain-specific mechanisms are recruited across the brain to adjust the visual perception.SIGNIFICANCE STATEMENT Reward has a profound effect on perception, but it is not known whether shared or disparate mechanisms underlie the reward-driven effects across sensory modalities. In this human fMRI study, we examined the reward-driven modulation of the visual cortex by visual (intra-modal) and auditory (cross-modal) reward-associated cues. Using a model-based approach to identify the most plausible pattern of inter-regional effective connectivity, we found that higher-order areas involved in the valuation and attentional processing were recruited by both types of rewards. However, the pattern of connectivity between these areas and the early visual cortex was distinct between the intra- and cross-modal rewards. This evidence suggests that, to effectively adapt to the environment, reward signals may recruit both domain-general and domain-specific mechanisms.


Asunto(s)
Corteza Visual , Percepción Visual , Humanos , Masculino , Femenino , Atención , Encéfalo , Visión Ocular , Percepción Auditiva , Estimulación Luminosa/métodos , Estimulación Acústica/métodos
3.
J Neurosci ; 43(25): 4697-4708, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37221094

RESUMEN

Previous work has demonstrated that performance in an auditory selective attention task can be enhanced or impaired, depending on whether a task-irrelevant visual stimulus is temporally coherent with a target auditory stream or with a competing distractor. However, it remains unclear how audiovisual (AV) temporal coherence and auditory selective attention interact at the neurophysiological level. Here, we measured neural activity using EEG while human participants (men and women) performed an auditory selective attention task, detecting deviants in a target audio stream. The amplitude envelope of the two competing auditory streams changed independently, while the radius of a visual disk was manipulated to control the AV coherence. Analysis of the neural responses to the sound envelope demonstrated that auditory responses were enhanced largely independently of the attentional condition: both target and masker stream responses were enhanced when temporally coherent with the visual stimulus. In contrast, attention enhanced the event-related response evoked by the transient deviants, largely independently of AV coherence. These results provide evidence for dissociable neural signatures of bottom-up (coherence) and top-down (attention) effects in AV object formation.SIGNIFICANCE STATEMENT Temporal coherence between auditory stimuli and task-irrelevant visual stimuli can enhance behavioral performance in auditory selective attention tasks. However, how audiovisual temporal coherence and attention interact at the neural level has not been established. Here, we measured EEG during a behavioral task designed to independently manipulate audiovisual coherence and auditory selective attention. While some auditory features (sound envelope) could be coherent with visual stimuli, other features (timbre) were independent of visual stimuli. We find that audiovisual integration can be observed independently of attention for sound envelopes temporally coherent with visual stimuli, while the neural responses to unexpected timbre changes are most strongly modulated by attention. Our results provide evidence for dissociable neural mechanisms of bottom-up (coherence) and top-down (attention) effects on audiovisual object formation.


Asunto(s)
Percepción Auditiva , Potenciales Evocados , Masculino , Humanos , Femenino , Potenciales Evocados/fisiología , Percepción Auditiva/fisiología , Atención/fisiología , Sonido , Estimulación Acústica , Percepción Visual/fisiología , Estimulación Luminosa
4.
Neuroimage ; 285: 120476, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030051

RESUMEN

Multimodal stimulation can reverse pathological neural activity and improve symptoms in neuropsychiatric diseases. Recent research shows that multimodal acoustic-electric trigeminal-nerve stimulation (TNS) (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) can improve consciousness in patients with disorders of consciousness. However, the reliability and mechanism of this novel approach remain largely unknown. We explored the effects of multimodal acoustic-electric TNS in healthy human participants by assessing conscious perception before and after stimulation using behavioral and neural measures in tactile and auditory target-detection tasks. To explore the mechanisms underlying the putative effects of acoustic-electric stimulation, we fitted a biologically plausible neural network model to the neural data using dynamic causal modeling. We observed that (1) acoustic-electric stimulation improves conscious tactile perception without a concomitant change in auditory perception, (2) this improvement is caused by the interplay of the acoustic and electric stimulation rather than any of the unimodal stimulation alone, and (3) the effect of acoustic-electric stimulation on conscious perception correlates with inter-regional connection changes in a recurrent neural processing model. These results provide evidence that acoustic-electric TNS can promote conscious perception. Alterations in inter-regional cortical connections might be the mechanism by which acoustic-electric TNS achieves its consciousness benefits.


Asunto(s)
Percepción Auditiva , Estado de Conciencia , Humanos , Reproducibilidad de los Resultados , Estimulación Eléctrica , Percepción Auditiva/fisiología , Estimulación Acústica/métodos , Acústica , Nervio Trigémino/fisiología
5.
BMC Biol ; 21(1): 130, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254137

RESUMEN

BACKGROUND: Non-invasive recordings of gross neural activity in humans often show responses to omitted stimuli in steady trains of identical stimuli. This has been taken as evidence for the neural coding of prediction or prediction error. However, evidence for such omission responses from invasive recordings of cellular-scale responses in animal models is scarce. Here, we sought to characterise omission responses using extracellular recordings in the auditory cortex of anaesthetised rats. We profiled omission responses across local field potentials (LFP), analogue multiunit activity (AMUA), and single/multi-unit spiking activity, using stimuli that were fixed-rate trains of acoustic noise bursts where 5% of bursts were randomly omitted. RESULTS: Significant omission responses were observed in LFP and AMUA signals, but not in spiking activity. These omission responses had a lower amplitude and longer latency than burst-evoked sensory responses, and omission response amplitude increased as a function of the number of preceding bursts. CONCLUSIONS: Together, our findings show that omission responses are most robustly observed in LFP and AMUA signals (relative to spiking activity). This has implications for models of cortical processing that require many neurons to encode prediction errors in their spike output.


Asunto(s)
Corteza Auditiva , Animales , Ratas , Estimulación Acústica , Potenciales de Acción/fisiología , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Neuronas/fisiología
6.
BMC Biol ; 20(1): 48, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172815

RESUMEN

BACKGROUND: To localize sound sources accurately in a reverberant environment, human binaural hearing strongly favors analyzing the initial wave front of sounds. Behavioral studies of this "precedence effect" have so far largely been confined to human subjects, limiting the scope of complementary physiological approaches. Similarly, physiological studies have mostly looked at neural responses in the inferior colliculus, the main relay point between the inner ear and the auditory cortex, or used modeling of cochlear auditory transduction in an attempt to identify likely underlying mechanisms. Studies capable of providing a direct comparison of neural coding and behavioral measures of sound localization under the precedence effect are lacking. RESULTS: We adapted a "temporal weighting function" paradigm previously developed to quantify the precedence effect in human for use in laboratory rats. The animals learned to lateralize click trains in which each click in the train had a different interaural time difference. Computing the "perceptual weight" of each click in the train revealed a strong onset bias, very similar to that reported for humans. Follow-on electrocorticographic recording experiments revealed that onset weighting of interaural time differences is a robust feature of the cortical population response, but interestingly, it often fails to manifest at individual cortical recording sites. CONCLUSION: While previous studies suggested that the precedence effect may be caused by early processing mechanisms in the cochlea or inhibitory circuitry in the brainstem and midbrain, our results indicate that the precedence effect is not fully developed at the level of individual recording sites in the auditory cortex, but robust and consistent precedence effects are observable only in the auditory cortex at the level of cortical population responses. This indicates that the precedence effect emerges at later cortical processing stages and is a significantly "higher order" feature than has hitherto been assumed.


Asunto(s)
Corteza Auditiva , Colículos Inferiores , Localización de Sonidos , Estimulación Acústica/métodos , Animales , Corteza Auditiva/fisiología , Audición , Humanos , Colículos Inferiores/fisiología , Localización de Sonidos/fisiología
7.
Neuroimage ; 247: 118746, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34875382

RESUMEN

The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input.


Asunto(s)
Ondas Encefálicas/fisiología , Estimulación Luminosa/métodos , Adulto , Percepción Auditiva/fisiología , Encéfalo/fisiología , Discriminación en Psicología/fisiología , Epilepsia Refractaria/fisiopatología , Electroencefalografía , Femenino , Humanos , Estudios Longitudinales , Masculino , Tiempo de Reacción , Percepción Visual/fisiología
8.
Cereb Cortex ; 31(7): 3226-3236, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33625488

RESUMEN

In contrast to classical views of working memory (WM) maintenance, recent research investigating activity-silent neural states has demonstrated that persistent neural activity in sensory cortices is not necessary for active maintenance of information in WM. Previous studies in humans have measured putative memory representations indirectly, by decoding memory contents from neural activity evoked by a neutral impulse stimulus. However, it is unclear whether memory contents can also be decoded in different species and attentional conditions. Here, we employ a cross-species approach to test whether auditory memory contents can be decoded from electrophysiological signals recorded in different species. Awake human volunteers (N = 21) were exposed to auditory pure tone and noise burst stimuli during an auditory sensory memory task using electroencephalography. In a closely matching paradigm, anesthetized female rats (N = 5) were exposed to comparable stimuli while neural activity was recorded using electrocorticography from the auditory cortex. In both species, the acoustic frequency could be decoded from neural activity evoked by pure tones as well as neutral frozen noise burst stimuli. This finding demonstrates that memory contents can be decoded in different species and different states using homologous methods, suggesting that the mechanisms of sensory memory encoding are evolutionarily conserved across species.


Asunto(s)
Estimulación Acústica/métodos , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Memoria a Corto Plazo/fisiología , Adulto , Animales , Electrocorticografía/métodos , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Wistar , Tiempo de Reacción/fisiología , Especificidad de la Especie , Adulto Joven
9.
J Cogn Neurosci ; 33(8): 1549-1562, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496376

RESUMEN

Our understanding of the sensory environment is contextualized on the basis of prior experience. Measurement of auditory ERPs provides insight into automatic processes that contextualize the relevance of sound as a function of how sequences change over time. However, task-independent exposure to sound has revealed that strong first impressions exert a lasting impact on how the relevance of sound is contextualized. Dynamic causal modeling was applied to auditory ERPs collected during presentation of alternating pattern sequences. A local regularity (a rare p = .125 vs. common p = .875 sound) alternated to create a longer timescale regularity (sound probabilities alternated regularly creating a predictable block length), and the longer timescale regularity changed halfway through the sequence (the regular block length became shorter or longer). Predictions should be revised for local patterns when blocks alternated and for longer patterning when the block length changed. Dynamic causal modeling revealed an overall higher precision for the error signal to the rare sound in the first block type, consistent with the first impression. The connectivity changes in response to errors within the underlying neural network were also different for the two blocks with significantly more revision of predictions in the arrangement that violated the first impression. Furthermore, the effects of block length change suggested errors within the first block type exerted more influence on the updating of longer timescale predictions. These observations support the hypothesis that automatic sequential learning creates a high-precision context (first impression) that impacts learning rates and updates to those learning rates when predictions arising from that context are violated. The results further evidence automatic pattern learning over multiple timescales simultaneously, even during task-independent passive exposure to sound.


Asunto(s)
Aprendizaje Profundo , Estimulación Acústica , Percepción Auditiva , Electroencefalografía , Potenciales Evocados Auditivos , Humanos
10.
J Neurosci ; 39(49): 9806-9817, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31662425

RESUMEN

Temporal orienting improves sensory processing, akin to other top-down biases. However, it is unknown whether these improvements reflect increased neural gain to any stimuli presented at expected time points, or specific tuning to task-relevant stimulus aspects. Furthermore, while other top-down biases are selective, the extent of trade-offs across time is less well characterized. Here, we tested whether gain and/or tuning of auditory frequency processing in humans is modulated by rhythmic temporal expectations, and whether these modulations are specific to time points relevant for task performance. Healthy participants (N = 23) of either sex performed an auditory discrimination task while their brain activity was measured using magnetoencephalography/electroencephalography (M/EEG). Acoustic stimulation consisted of sequences of brief distractors interspersed with targets, presented in a rhythmic or jittered way. Target rhythmicity not only improved behavioral discrimination accuracy and M/EEG-based decoding of targets, but also of irrelevant distractors preceding these targets. To explain this finding in terms of increased sensitivity and/or sharpened tuning to auditory frequency, we estimated tuning curves based on M/EEG decoding results, with separate parameters describing gain and sharpness. The effect of rhythmic expectation on distractor decoding was linked to gain increase only, suggesting increased neural sensitivity to any stimuli presented at relevant time points.SIGNIFICANCE STATEMENT Being able to predict when an event may happen can improve perception and action related to this event, likely due to the alignment of neural activity to the temporal structure of stimulus streams. However, it is unclear whether rhythmic increases in neural sensitivity are specific to task-relevant targets, and whether they competitively impair stimulus processing at unexpected time points. By combining magnetoencephalography and encephalographic recordings, neural decoding of auditory stimulus features, and modeling, we found that rhythmic expectation improved neural decoding of both relevant targets and irrelevant distractors presented and expected time points, but did not competitively impair stimulus processing at unexpected time points. Using a quantitative model, these results were linked to nonspecific neural gain increases due to rhythmic expectation.


Asunto(s)
Anticipación Psicológica/fisiología , Percepción de la Altura Tonal/fisiología , Estimulación Acústica , Adolescente , Adulto , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Discriminación en Psicología/fisiología , Electroencefalografía , Femenino , Voluntarios Sanos , Humanos , Magnetoencefalografía , Masculino , Desempeño Psicomotor/fisiología , Adulto Joven
11.
PLoS Biol ; 15(12): e2003143, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29206225

RESUMEN

The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants' brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling.


Asunto(s)
Atención/fisiología , Conducta/fisiología , Mapeo Encefálico , Vías Nerviosas/fisiología , Tiempo de Reacción , Estimulación Acústica , Adolescente , Adulto , Ritmo alfa/fisiología , Teorema de Bayes , Mapeo Encefálico/métodos , Señales (Psicología) , Discriminación en Psicología/fisiología , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estimulación Luminosa , Adulto Joven
12.
J Neurosci ; 38(40): 8680-8693, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30143578

RESUMEN

Using predictions based on environmental regularities is fundamental for adaptive behavior. While it is widely accepted that predictions across different stimulus attributes (e.g., time and content) facilitate sensory processing, it is unknown whether predictions across these attributes rely on the same neural mechanism. Here, to elucidate the neural mechanisms of predictions, we combine invasive electrophysiological recordings (human electrocorticography in 4 females and 2 males) with computational modeling while manipulating predictions about content ("what") and time ("when"). We found that "when" predictions increased evoked activity over motor and prefrontal regions both at early (∼180 ms) and late (430-450 ms) latencies. "What" predictability, however, increased evoked activity only over prefrontal areas late in time (420-460 ms). Beyond these dissociable influences, we found that "what" and "when" predictability interactively modulated the amplitude of early (165 ms) evoked responses in the superior temporal gyrus. We modeled the observed neural responses using biophysically realistic neural mass models, to better understand whether "what" and "when" predictions tap into similar or different neurophysiological mechanisms. Our modeling results suggest that "what" and "when" predictability rely on complementary neural processes: "what" predictions increased short-term plasticity in auditory areas, whereas "when" predictability increased synaptic gain in motor areas. Thus, content and temporal predictions engage complementary neural mechanisms in different regions, suggesting domain-specific prediction signaling along the cortical hierarchy. Encoding predictions through different mechanisms may endow the brain with the flexibility to efficiently signal different sources of predictions, weight them by their reliability, and allow for their encoding without mutual interference.SIGNIFICANCE STATEMENT Predictions of different stimulus features facilitate sensory processing. However, it is unclear whether predictions of different attributes rely on similar or different neural mechanisms. By combining invasive electrophysiological recordings of cortical activity with experimental manipulations of participants' predictions about content and time of acoustic events, we found that the two types of predictions had dissociable influences on cortical activity, both in terms of the regions involved and the timing of the observed effects. Further, our biophysical modeling analysis suggests that predictability of content and time rely on complementary neural processes: short-term plasticity in auditory areas and synaptic gain in motor areas, respectively. This suggests that predictions of different features are encoded with complementary neural mechanisms in different brain regions.


Asunto(s)
Anticipación Psicológica/fisiología , Corteza Auditiva/fisiología , Modelos Neurológicos , Estimulación Acústica , Adulto , Electrocorticografía , Potenciales Evocados Auditivos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Tiempo de Reacción , Factores de Tiempo , Percepción Visual/fisiología , Adulto Joven
13.
Neuroimage ; 200: 59-71, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31226494

RESUMEN

It has been proposed that accurate motor control relies on Bayesian inference that integrates sensory input with prior contextual knowledge (Bays and Wolpert, 2007; Körding and Wolpert, 2004; Wolpert et al., 1995). Recent evidence has suggested that modulations in beta power (∼12-30 Hz) measured over sensorimotor cortices using electroencephalography (EEG) may represent parameters of Bayesian inference. While the well characterised post-movement beta synchronisation has been shown to correlate with prediction error (H. Tan, Jenkinson, & Brown, 2014; Huiling Tan, Wade, & Brown, 2016), recent evidence suggests that beta power may also represent uncertainty measures (Tan et al., 2016; Tzagarakis et al., 2015). The current study aimed to measure the neurophysiological correlates of uncertainty mediating Bayesian updating during a visuomotor adaptation paradigm in healthy human participants. In particular, sensory uncertainty was directly modulated to measure its effect on sensorimotor beta power. Participant's behaviour was modelled using the Hierarchical Gaussian Filter (HGF) in order to extract the latent variables involved in learning actions required by the task and correlate these with the measured EEG. We found that sensorimotor beta power correlated with inverse uncertainty afforded to sensory prediction errors both prior to and following a movement. This suggests that sensorimotor beta oscillations may more readily represent relative uncertainty within the sensorimotor system rather than error. Neurophysiological models describing the generation of beta oscillations offer a potential mechanism by which this neural signature may encode latent uncertainty parameters. This is essential for understanding how the brain controls behaviour.


Asunto(s)
Adaptación Fisiológica/fisiología , Anticipación Psicológica/fisiología , Ritmo beta/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Corteza Sensoriomotora/fisiología , Incertidumbre , Percepción Visual/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Adulto Joven
14.
J Neurosci ; 37(28): 6751-6760, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28607165

RESUMEN

Stimulus predictability can lead to substantial modulations of brain activity, such as shifts in sustained magnetic field amplitude, measured with magnetoencephalography (MEG). Here, we provide a mechanistic explanation of these effects using MEG data acquired from healthy human volunteers (N = 13, 7 female). In a source-level analysis of induced responses, we established the effects of orthogonal predictability manipulations of rapid tone-pip sequences (namely, sequence regularity and alphabet size) along the auditory processing stream. In auditory cortex, regular sequences with smaller alphabets induced greater gamma activity. Furthermore, sequence regularity shifted induced activity in frontal regions toward higher frequencies. To model these effects in terms of the underlying neurophysiology, we used dynamic causal modeling for cross-spectral density and estimated slow fluctuations in neural (postsynaptic) gain. Using the model-based parameters, we accurately explain the sensor-level sustained field amplitude, demonstrating that slow changes in synaptic efficacy, combined with sustained sensory input, can result in profound and sustained effects on neural responses to predictable sensory streams.SIGNIFICANCE STATEMENT Brain activity can be strongly modulated by the predictability of stimuli it is currently processing. An example of such a modulation is a shift in sustained magnetic field amplitude, measured with magnetoencephalography. Here, we provide a mechanistic explanation of these effects. First, we establish the oscillatory neural correlates of independent predictability manipulations in hierarchically distinct areas of the auditory processing stream. Next, we use a biophysically realistic computational model to explain these effects in terms of the underlying neurophysiology. Finally, using the model-based parameters describing neural gain modulation, we can explain the previously unexplained effects observed at the sensor level. This demonstrates that slow modulations of synaptic gain can result in profound and sustained effects on neural activity.


Asunto(s)
Anticipación Psicológica/fisiología , Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Potenciación a Largo Plazo/fisiología , Transmisión Sináptica/fisiología , Estimulación Acústica , Adulto , Atención/fisiología , Femenino , Humanos , Masculino
15.
Neuroimage ; 172: 642-653, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29421324

RESUMEN

Drug-induced unconsciousness is an essential component of general anesthesia, commonly attributed to attenuation of higher-order processing of external stimuli and a resulting loss of information integration capabilities of the brain. In this study, we investigated how the hypnotic drug propofol at doses comparable to those in clinical practice influences the processing of somatosensory stimuli in the spinal cord and in primary and higher-order cortices. Using nociceptive reflexes, somatosensory evoked potentials and functional magnet resonance imaging (fMRI), we found that propofol abolishes the processing of innocuous and moderate noxious stimuli at low to medium concentration levels, but that intense noxious stimuli evoked spinal and cerebral responses even during deep propofol anesthesia that caused profound electroencephalogram (EEG) burst suppression. While nociceptive reflexes and somatosensory potentials were affected only in a minor way by further increasing doses of propofol after the loss of consciousness, fMRI showed that increasing propofol concentration abolished processing of intense noxious stimuli in the insula and secondary somatosensory cortex and vastly increased processing in the frontal cortex. As the fMRI functional connectivity showed congruent changes with increasing doses of propofol - namely the temporal brain areas decreasing their connectivity with the bilateral pre-/postcentral gyri and the supplementary motor area, while connectivity of the latter with frontal areas is increased - we conclude that the changes in processing of noxious stimuli during propofol anesthesia might be related to changes in functional connectivity.


Asunto(s)
Anestésicos Intravenosos/farmacología , Encéfalo/efectos de los fármacos , Propofol/farmacología , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Adulto , Encéfalo/fisiología , Electroencefalografía , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/efectos de los fármacos , Médula Espinal/fisiología , Transmisión Sináptica/fisiología
16.
Neuroimage ; 153: 109-121, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28341164

RESUMEN

The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding, this congruence can be explained by appeal to a precision-weighting mechanism, which mediates bottom-up and top-down attentional processes by modulating the influence of feedforward and feedback signals throughout the cortical hierarchy. The influence of expectation and attention on pain processing can be mapped onto changes in effective connectivity between or within specific neuronal populations, using a canonical microcircuit (CMC) model of hierarchical processing. We thus implemented a CMC within dynamic causal modelling for magnetoencephalography in human subjects, to investigate how expectation violation and attention to pain modulate intrinsic (within-source) and extrinsic (between-source) connectivity in the somatosensory hierarchy. This enabled us to establish whether both expectancy and attentional processes are mediated by a similar precision-encoding mechanism within a network of somatosensory, frontal and parietal sources. We found that both unexpected and attended pain modulated the gain of superficial pyramidal cells in primary and secondary somatosensory cortex. This modulation occurred in the context of increased lateralized recurrent connectivity between somatosensory and fronto-parietal sources, driven by unexpected painful occurrences. Finally, the strength of effective connectivity parameters in S1, S2 and IFG predicted individual differences in subjective pain modulation ratings. Our findings suggest that neuromodulatory gain control in the somatosensory hierarchy underlies the influence of both expectation violation and attention on cortical processing and pain perception.


Asunto(s)
Atención/fisiología , Modelos Neurológicos , Percepción del Dolor/fisiología , Corteza Somatosensorial/fisiología , Adulto , Mapeo Encefálico , Electrochoque , Femenino , Lóbulo Frontal/fisiología , Humanos , Magnetoencefalografía , Masculino , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Adulto Joven
17.
Cereb Cortex ; 25(11): 4273-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25596591

RESUMEN

Despite similar behavioral effects, attention and expectation influence evoked responses differently: Attention typically enhances event-related responses, whereas expectation reduces them. This dissociation has been reconciled under predictive coding, where prediction errors are weighted by precision associated with attentional modulation. Here, we tested the predictive coding account of attention and expectation using magnetoencephalography and modeling. Temporal attention and sensory expectation were orthogonally manipulated in an auditory mismatch paradigm, revealing opposing effects on evoked response amplitude. Mismatch negativity (MMN) was enhanced by attention, speaking against its supposedly pre-attentive nature. This interaction effect was modeled in a canonical microcircuit using dynamic causal modeling, comparing models with modulation of extrinsic and intrinsic connectivity at different levels of the auditory hierarchy. While MMN was explained by recursive interplay of sensory predictions and prediction errors, attention was linked to the gain of inhibitory interneurons, consistent with its modulation of sensory precision.


Asunto(s)
Atención/fisiología , Corteza Auditiva/fisiología , Variación Contingente Negativa/fisiología , Magnetoencefalografía , Redes Neurales de la Computación , Dinámicas no Lineales , Estimulación Acústica/métodos , Adulto , Percepción Auditiva/fisiología , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
18.
J Neurosci ; 33(29): 11878-87, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23864677

RESUMEN

Neural signatures of somatosensory awareness have often been studied by examining EEG responses to hardly detectable stimuli. Previous reports consistently showed that event-related potentials (ERPs) measured over early somatosensory cortex diverge for detected and missed perithreshold stimuli at 80-100 ms after stimulus onset. So far, however, all previous studies have operationalized somatosensory awareness as binary stimulus detection. Here, we investigated whether ERP components attributed to neuronal activity in early somatosensory cortices would parametrically reflect subjective ratings of stimulus awareness. EEG (64 channel) was recorded in human participants (N = 20), with perithreshold electrical stimulation applied to the left median nerve. Participants indicated perceptibility on a continuous visual rating scale, and stimulation intensity was readjusted in each block to a perithreshold level. The aim of the analysis was to investigate which brain areas reflect the subsequent perceptual awareness ratings parametrically, and how early such parametric effects occur. Parametric ERP effects were found as early as 86 ms after stimulus onset. This parametric modulation of ERP amplitude was source localized to secondary somatosensory cortex, and attributed to feedforward processing between primary and secondary somatosensory cortex by means of dynamic causal modeling (DCM). Furthermore, later in the analysis window, the subjective rating of stimuli correlated with the amplitude of the N140 component and with a broadly distributed P300 component. By DCM modeling, these late effects were explained in terms of recurrent processing within the network of somatosensory and premotor cortices. Our results indicate that early neural activity in the somatosensory cortex can reflect the subjective quality of tactile perception.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Estimulación Física , Tiempo de Reacción/fisiología , Tacto/fisiología
19.
Neuroimage ; 102 Pt 2: 241-8, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25109531

RESUMEN

A good example of inferential processes in perception is long-range apparent motion (AM), the illusory percept of visual motion that occurs when two spatially distinct stationary visual objects are presented in alternating sequence. The AM illusion is strongest at presentation frequencies around 3 Hz. At lower presentation frequencies, the percept varies from trial to trial between AM and sequential alternation, while at higher frequencies perception varies between AM and two simultaneously flickering objects. Previous studies have demonstrated that prestimulus alpha oscillations explain trial-to-trial variability in detection performance for visual stimuli presented at threshold. In the present study, we investigated whether fluctuations of prestimulus alpha oscillations can also account for variations in AM perception. Prestimulus alpha power was stronger when observers reported AM perception in subsequent trials with low presentation frequencies, while at high presentation frequencies there were no significant differences in alpha power preceding AM and veridical flicker perception. Moreover, when observers perceived AM the prestimulus functional connectivity between frontal and occipital channels was increased in the alpha band, as revealed by the imaginary part of coherency, which is insensitive to artefacts from volume conduction. Dynamic causal modelling of steady-state responses revealed that the most likely direction of this fronto-occipital connectivity was from frontal to occipital sources. These results point to a role of ongoing alpha oscillations in the inferential process that gives rise to the perception of AM and suggest that fronto-occipital interactions bias perception towards internally generated predictions.


Asunto(s)
Ritmo alfa , Lóbulo Frontal/fisiología , Ilusiones/fisiología , Percepción de Movimiento/fisiología , Lóbulo Occipital/fisiología , Adulto , Teorema de Bayes , Electroencefalografía , Femenino , Humanos , Masculino , Estimulación Luminosa , Adulto Joven
20.
Hum Brain Mapp ; 35(5): 2412-23, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23913849

RESUMEN

Neuroimaging studies of working memory (WM) suggest that prefrontal cortex may assist sustained maintenance, but also internal manipulation, of stimulus representations in lower-level areas. A different line of research in the somatosensory domain indicates that neuronal activity in ventrolateral prefrontal cortex (VLPFC) may also represent specific memory contents in itself, however leaving open to what extent top-down control on lower-level areas is exerted, or how internal manipulation processes are implemented. We used functional imaging and connectivity analysis to study static maintenance and internal manipulation of tactile working memory contents after physically identical stimulation conditions, in human subjects. While both tasks recruited similar subareas in the inferior frontal gyrus (IFG) in VLPFC, static maintenance of the tactile information was additionally characterized by increased functional coupling between IFG and primary somatosensory cortex. Independently, during internal manipulation, a quantitative representation of the task-relevant information was evident in IFG itself, even in the absence of physical stimulation. Together, these findings demonstrate the functional diversity of activity within VLPFC according to different working memory demands, and underline the role of IFG as a core region in sensory WM processing.


Asunto(s)
Vías Aferentes/fisiología , Mapeo Encefálico , Cognición/fisiología , Corteza Prefrontal/fisiología , Percepción del Tacto/fisiología , Adulto , Análisis de Varianza , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Oxígeno/sangre , Estimulación Física , Corteza Prefrontal/irrigación sanguínea , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA