Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 68(8): 763-800, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29364776

RESUMEN

Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scales and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed, and new methods to improve the spatiotemporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions such as national totals on appropriate grids. The wide area of natural emissions is also summarized, and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example, by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. IMPLICATIONS: Emission data are probably the most important input for chemistry transport model (CTM) systems. They need to be provided in high spatial and temporal resolution and on a grid that is in agreement with the CTM grid. Simple methods to distribute the emissions in time and space need to be replaced by sophisticated emission models in order to improve the CTM results. New methods, e.g., for ammonia emissions, provide grid cell-dependent temporal profiles. In the future, large data fields from traffic observations or satellite observations could be used for more detailed emission data.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Modelos Teóricos , Contaminantes Atmosféricos/química , Humanos
2.
Environ Pollut ; 158(6): 2241-50, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20226578

RESUMEN

As a consequence of the global distribution of manufacturing sites and the increasing international division of labour, ship traffic is steadily increasing and is becoming more and more important as an origin of air pollution. This study investigates the impact of ship emissions in coastal areas of the North Sea under conditions of the year 2000 by means of a regional chemistry transport model which runs on a sufficiently high resolution to study air pollution in coastal regions. It was found that northern Germany and Denmark in summer suffer from more than 50% higher sulphate, nitrate and ammonium aerosol concentrations due to contributions from ships. The implementation of a sulphur emission control area (SECA) in the North Sea, as it was implemented at the end of 2007, directly results in reduced sulphur dioxide and sulphate aerosol concentrations while nitrate aerosol concentrations are slightly increased.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Navíos , Emisiones de Vehículos/análisis , Movimientos del Aire , Dinamarca , Alemania , Modelos Teóricos , Océanos y Mares , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA