RESUMEN
Non-saleable milk (waste milk, WM) is contaminated with an undefined spectrum of potentially harmful pathogens and antimicrobial residues. The objective of this study was to determine the impact of feeding bulk milk (BM) or WM - both pasteurized or not - on calf performance, health and the antibiotic resistance of specific faecal bacteria. A total of 114 calves from a large-scale dairy were housed outdoors in individual hutches and were randomly assigned to one of four feeding groups. The calves were fed either WM, pasteurized WM (pWM), BM or pasteurized BM (pBM) from day 3 to 56 of life. Milk samples taken from the pasteurizer and calves' nipple buckets were investigated at regular intervals for total plate count and counts of thermoduric bacteria, coliforms and mastitis pathogens. Faecal samples were taken on days 2, 14, 28 and 56 of life from randomly selected calves of the WM, pWM and BM groups (each N = 8-9) and processed to obtain from each sample preferably two isolates of Escherichia (E.) coli and Enterococcus spp. respectively. Isolates were tested for their antimicrobial susceptibility to 25 antimicrobial agents by broth microdilution. Daily weight gain, milk and calf starter intake and health parameters did not differ significantly between the calves of the four feeding groups. The proportion of resistant E. coli isolates was significantly higher in calves fed WM and in calves fed pWM (most pronounced for cephalosporins) than in calves receiving BM. No differences in resistance were found for Enterococus spp. Thus, the concerns for selecting resistant faecal bacteria by feeding WM seem to be justified. Nonetheless, pasteurized WM of cows not treated with antimicrobials represents an acceptable feed for young calves.
Asunto(s)
Antibacterianos/farmacología , Enfermedades de los Bovinos/prevención & control , Bovinos/crecimiento & desarrollo , Heces/microbiología , Leche/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Industria Lechera , Dieta/veterinaria , Farmacorresistencia Bacteriana , Femenino , Masculino , Leche/química , PasteurizaciónRESUMEN
[3-vinyl]-132-OH-bacteriochlorophyll a has been selectively exchanged against native bacteriochlorophyll a in the monomer binding sites at the A- and B-branch of the photosynthetic reaction centre from Rhodobacter sphaeroides. Transient absorption difference measurements were performed on these samples over a temperature range from 4.2 to 300 K with 20 ns time resolution. Specifically the decay of the primary donor triplet state, 3P870, as well as the rise and decay rates of the carotenoid triplet state, 3Car (spheroidene), were measured. The observed rates revealed a thermally activated carotenoid triplet formation corresponding to the decay of the primary donor triplet state. The activation energies for the triplet energy transfer process were 100(+/-10) cm-1 for reaction centers from wild-type Rhodobacter sphaeroides 2.4.1, with and without exchange of the monomeric bacteriochlorophyll on the electron transfer-active branch, BA. For reaction centers from Rhodobacter sphaeroides R26.1 with both monomers exchanged against [3-vinyl]-132-OH-bacteriochlorophyll a, and subsequent spheroidene reconstitution the activation energy was 460(+/-20) cm-1. These activation energies correspond to the energy difference between the triplet states of the accessory BChl monomer, BB, and the primary donor when native BChl a or [3-vinyl]-132-OH-BChl a is present in the BB binding site. In all samples the 3Car formation rates were bi-phasic over a large temperature range. A fast temperature-independent rate was observed on the wavelength of the carotenoid triplet-triplet absorption which dominated at very low temperatures. Additionally, a slower temperature-independent 3Car formation rate was observed at low temperatures which could be explained with the assumption of heterogeneity in the energy barrier (3BB) and/or the primary donor triplet state (3P870). A tunneling mechanism as proposed earlier by Kolaczkowski (PhD thesis, Brown University, 1989) is not only unnecessary but also incompatible with the available experimental data.