Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38236742

RESUMEN

The segregation of the cortical mantle into cytoarchitectonic areas provides a structural basis for the specialization of different brain regions. In vivo neuroimaging experiments can be linked to this postmortem cytoarchitectonic parcellation via Julich-Brain. This atlas embeds probabilistic maps that account for inter-individual variability in the localization of cytoarchitectonic areas in the reference spaces targeted by spatial normalization. We built a framework to improve the alignment of architectural areas across brains using cortical folding landmarks. This framework, initially designed for in vivo imaging, was adapted to postmortem histological data. We applied this to the first 14 brains used to establish the Julich-Brain atlas to infer a refined atlas with more focal probabilistic maps. The improvement achieved is significant in the primary regions and some of the associative areas. This framework also provides a tool for exploring the relationship between cortical folding patterns and cytoarchitectonic areas in different cortical regions to establish new landmarks in the remainder of the cortex.


Asunto(s)
Encéfalo , Neuroimagen , Autopsia , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
2.
Neuroimage ; 279: 120336, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597590

RESUMEN

Group level analyses of functional regions involved in voice perception show evidence of 3 sets of bilateral voice-sensitive activations in the human prefrontal cortex, named the anterior, middle and posterior Frontal Voice Areas (FVAs). However, the relationship with the underlying sulcal anatomy, highly variable in this region, is still unknown. We examined the inter-individual variability of the FVAs in conjunction with the sulcal anatomy. To do so, anatomical and functional MRI scans from 74 subjects were analyzed to generate individual contrast maps of the FVAs and relate them to each subject's manually labeled prefrontal sulci. We report two major results. First, the frontal activations for the voice are significantly associated with the sulcal anatomy. Second, this correspondence with the sulcal anatomy at the individual level is a better predictor than coordinates in the MNI space. These findings offer new perspectives for the understanding of anatomical-functional correspondences in this complex cortical region. They also shed light on the importance of considering individual-specific variations in subject's anatomy.


Asunto(s)
Neocórtex , Voz , Humanos , Corteza Prefrontal/diagnóstico por imagen
3.
Mol Psychiatry ; 27(4): 2114-2125, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35136228

RESUMEN

Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas
4.
Hum Brain Mapp ; 43(1): 37-55, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32420680

RESUMEN

Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Encéfalo , Neuroimagen , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Estudios Multicéntricos como Asunto , Neurociencias
5.
Cereb Cortex ; 28(6): 1922-1933, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444225

RESUMEN

The influence of genes on cortical structures has been assessed through various phenotypes. The sulcal pits, which are the putative first cortical folds, have for long been assumed to be under tight genetic control, but this was never quantified. We estimated the pit depth heritability in various brain regions using the high quality and large sample size of the Human Connectome Project pedigree cohort. Analysis of additive genetic variance indicated that their heritability ranges between 0.2 and 0.5 and displays a regional genetic control with an overall symmetric pattern between hemispheres. However, a noticeable asymmetry of heritability estimates is observed in the superior temporal sulcus and could thus be related to language lateralization. The heritability range estimated in this study reinforces the idea that cortical shape is determined primarily by nongenetic factors, which is consistent with the important increase of cortical folding from birth to adult life and thus predominantly constrained by environmental factors. Nevertheless, the genetic cues, implicated with various local levels of heritability in the formation of sulcal pits, play a fundamental role in the normal gyral pattern development. Quantifying their influence and identifying the underlying genetic variants would provide insight into neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/anatomía & histología , Genotipo , Conectoma , Humanos
6.
J Neurosci ; 37(4): 839-853, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123020

RESUMEN

Cognitive functions arise from the coordination of large-scale brain networks. However, the principles governing interareal functional connectivity dynamics (FCD) remain elusive. Here, we tested the hypothesis that human executive functions arise from the dynamic interplay of multiple networks. To do so, we investigated FCD mediating a key executing function, known as arbitrary visuomotor mapping, using brain connectivity analyses of high-gamma activity recorded using MEG and intracranial EEG. Visuomotor mapping was found to arise from the dynamic interplay of three partly overlapping cortico-cortical and cortico-subcortical functional connectivity (FC) networks. First, visual and parietal regions coordinated with sensorimotor and premotor areas. Second, the dorsal frontoparietal circuit together with the sensorimotor and associative frontostriatal networks took the lead. Finally, cortico-cortical interhemispheric coordination among bilateral sensorimotor regions coupled with the left frontoparietal network and visual areas. We suggest that these networks reflect the processing of visual information, the emergence of visuomotor plans, and the processing of somatosensory reafference or action's outcomes, respectively. We thus demonstrated that visuomotor integration resides in the dynamic reconfiguration of multiple cortico-cortical and cortico-subcortical FC networks. More generally, we showed that visuomotor-related FC is nonstationary and displays switching dynamics and areal flexibility over timescales relevant for task performance. In addition, visuomotor-related FC is characterized by sparse connectivity with density <10%. To conclude, our results elucidate the relation between dynamic network reconfiguration and executive functions over short timescales and provide a candidate entry point toward a better understanding of cognitive architectures. SIGNIFICANCE STATEMENT: Executive functions are supported by the dynamic coordination of neural activity over large-scale networks. The properties of large-scale brain coordination processes, however, remain unclear. Using tools combining MEG and intracranial EEG with brain connectivity analyses, we provide evidence that visuomotor behaviors, a hallmark of executive functions, are mediated by the interplay of multiple and spatially overlapping subnetworks. These subnetworks span visuomotor-related areas, the cortico-cortical and cortico-subcortical interactions of which evolve rapidly and reconfigure over timescales relevant for behavior. Visuomotor-related functional connectivity dynamics are characterized by sparse connections, nonstationarity, switching dynamics, and areal flexibility. We suggest that these properties represent key aspects of large-scale functional networks and cognitive architectures.


Asunto(s)
Función Ejecutiva/fisiología , Corteza Motora/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología , Corteza Visual/fisiología , Adulto , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Movimiento/fisiología , Estimulación Luminosa/métodos , Distribución Aleatoria , Adulto Joven
7.
Neuroimage ; 174: 297-307, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29571714

RESUMEN

The asymmetry of the superior temporal sulcus (STS) has been identified as a species-specific feature of the human brain. The so-called superior temporal asymmetrical pit (STAP) area is observed from the last trimester of gestation onwards and is far less pronounced in the chimpanzee brain. This asymmetry is associated with more frequent sulcal interruptions, named plis de passage (PPs), leading to the irregular morphology of the left sulcus. In this paper, we aimed to characterize the variability, asymmetry, and heritability of these interruptions in the STS in comparison with the other main sulci. We developed an automated method to extract PPs across the cortex based on a highly reproducible grid of sulcal pits across individuals, which we applied to a subset of Human Connectome Project (HCP) subjects (N = 820). We report that only a few PPs across the cortex are genetically constrained, namely in the collateral, postcentral and superior temporal sulci and the calcarine fissure. Moreover, some PPs occur more often in one hemisphere than the other, namely in the precentral, postcentral, intraparietal sulci, as well as in both inferior and superior temporal sulci. Most importantly, we found that only the interruptions within the STAP region are both asymmetric and genetically constrained. Because this morphological pattern is located in an area of the left hemisphere related to speech, our results suggest structural constraints on the architecture of the linguistic network.


Asunto(s)
Carácter Cuantitativo Heredable , Lóbulo Temporal/anatomía & histología , Adulto , Conectoma , Femenino , Hispánicos o Latinos/genética , Humanos , Masculino , Linaje , Sustancia Blanca/anatomía & histología , Población Blanca/genética , Adulto Joven
8.
Hum Brain Mapp ; 37(4): 1573-92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26813563

RESUMEN

An open question in neuroimaging is how to develop anatomical brain atlases for the analysis of functional data. Here, we present a cortical parcellation model based on macroanatomical information and test its validity on visuomotor-related cortical functional networks. The parcellation model is based on a recently developed cortical parameterization method (Auzias et al., [2013]: IEEE Trans Med Imaging 32:873-887), called HIP-HOP. This method exploits a set of primary and secondary sulci to create an orthogonal coordinate system on the cortical surface. A natural parcellation scheme arises from the axes of the HIP-HOP model running along the fundus of selected sulci. The resulting parcellation scheme, called MarsAtlas, complies with dorsoventral/rostrocaudal direction fields and allows inter-subject matching. To test it for functional mapping, we analyzed a MEG dataset collected from human participants performing an arbitrary visuomotor mapping task. Single-trial high-gamma activity, HGA (60-120 Hz), was estimated using spectral analysis and beamforming techniques at cortical areas arising from a Talairach atlas (i.e., Brodmann areas) and MarsAtlas. Using both atlases, we confirmed that visuomotor associations involve an increase in HGA over the sensorimotor and fronto-parietal network, in addition to medial prefrontal areas. However, MarsAtlas provided: (1) crucial functional information along both the dorsolateral and rostrocaudal direction; (2) an increase in statistical significance. To conclude, our results suggest that the MarsAtlas is a valid anatomical atlas for functional mapping, and represents a potential anatomical framework for integration of functional data arising from multiple techniques such as MEG, intracranial EEG and fMRI.


Asunto(s)
Atlas como Asunto , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Imagen por Resonancia Magnética/métodos , Desempeño Psicomotor/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Estimulación Luminosa/métodos , Distribución Aleatoria , Tiempo de Reacción/fisiología , Adulto Joven
9.
AIMS Neurosci ; 11(1): 25-38, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617038

RESUMEN

Auditory verbal hallucinations (AVHs) are among the most common and disabling symptoms of schizophrenia. They involve the superior temporal sulcus (STS), which is associated with language processing; specific STS patterns may reflect vulnerability to auditory hallucinations in schizophrenia. STS sulcal pits are the deepest points of the folds in this region and were investigated here as an anatomical landmark of AVHs. This study included 53 patients diagnosed with schizophrenia and past or present AVHs, as well as 100 healthy control volunteers. All participants underwent a 3-T magnetic resonance imaging T1 brain scan, and sulcal pit differences were compared between the two groups. Compared with controls, patients with AVHs had a significantly different distributions for the number of sulcal pits in the left STS, indicating a less complex morphological pattern. The association of STS sulcal morphology with AVH suggests an early neurodevelopmental process in the pathophysiology of schizophrenia with AVHs.

10.
Med Image Anal ; 97: 103282, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053168

RESUMEN

Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis, allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts' ratings using random forests. We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13 different scanners. Our study shows that FetMRQC's predictions generalize well to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed new insights on the developing human brain.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Diagnóstico Prenatal , Control de Calidad , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Diagnóstico Prenatal/métodos , Femenino , Embarazo , Aprendizaje Automático
11.
Biol Psychiatry ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395474

RESUMEN

BACKGROUND: Bipolar disorder (BD) is a complex and heterogeneous psychiatric disorder. Neurodevelopmental factors were suggested to contribute to the etiology of BD, yet a specific neurodevelopmental phenotype of the disorder remains unidentified. Our objective was to define and characterize a neurodevelopmental phenotype (NDP) in BD and validate its associations with clinical outcomes, polygenic risk scores (PGS), and treatment responses. METHOD: We analyzed the FACE-BD cohort of 4,468 BD patients, a validation cohort of 101 BD patients, and two independent replication datasets of 274 and 89 BD patients. Using factor analyses, we identified a set of criteria for defining NDP. We next developed a scoring system for NDP-load and assessed its association with prognosis, neurological soft signs, polygenic risk scores for neurodevelopmental disorders, and responses to treatment using multiple regressions, adjusted for age and sex with bootstrap replications. RESULTS: Our study established a NDP in BD consisting of nine clinical features: advanced paternal age, advanced maternal age, childhood maltreatment, attention deficit hyperactivity disorder (ADHD), early onset of BD, early onset of substance use disorders, early onset of anxiety disorders, early onset of eating disorders, specific learning disorders. Patients with higher NDP-load showed a worse prognosis and increased neurological soft signs. Notably, these individuals exhibited a poorer response to lithium treatment. Furthermore, a significant positive correlation was observed between the NDP-load and PGS for ADHD suggesting potential overlapping genetic factors or pathophysiological mechanisms between BD and ADHD. CONCLUSIONS: The proposed NDP constitutes a promising clinical tool for patient stratification in BD.

12.
PLoS One ; 18(11): e0293886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37943809

RESUMEN

Population-wise matching of the cortical folds is necessary to compute statistics, a required step for e.g. identifying biomarkers of neurological or psychiatric disorders. The difficulty arises from the massive inter-individual variations in the morphology and spatial organization of the folds. The task is challenging both methodologically and conceptually. In the widely used registration-based techniques, these variations are considered as noise and the matching of folds is only implicit. Alternative approaches are based on the extraction and explicit identification of the cortical folds. In particular, representing cortical folding patterns as graphs of sulcal basins-termed sulcal graphs-enables to formalize the task as a graph-matching problem. In this paper, we propose to address the problem of sulcal graph matching directly at the population level using multi-graph matching techniques. First, we motivate the relevance of the multi-graph matching framework in this context. We then present a procedure for generating populations of artificial sulcal graphs, which allows us to benchmark several state-of-the-art multi-graph matching methods. Our results on both artificial and real data demonstrate the effectiveness of multi-graph matching techniques in obtaining a population-wise consistent labeling of cortical folds at the sulcal basin level.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/anatomía & histología , Algoritmos , Membrana Celular , Cuidados Paliativos
13.
Front Neurosci ; 17: 1188367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360177

RESUMEN

Introduction: Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic non-specific forms (NS-FASD) that are still underdiagnosed and could benefit from new neuroanatomical markers. The main neuroanatomical manifestation of prenatal alcohol exposure on developmental toxicity is the reduction in brain size, but repeated imaging observations have long driven the attention on the corpus callosum (CC), without being all convergent. Our study proposed a new segmentation of the CC that relies on both a sulci-based cortical segmentation and the "hemispherotopic" organization of the transcallosal fibers. Methods: We collected a monocentric series of 37 subjects with FAS, 28 with NS-FASD, and 38 with typical development (6 to 25 years old) using brain MRI (1.5T). Associating T1- and diffusion-weighted imaging, we projected a sulci-based cortical segmentation of the hemispheres on the midsagittal section of the CC, resulting in seven homologous anterior-posterior parcels (frontopolar, anterior and posterior prefrontal, precentral, postcentral, parietal, and occipital). We measured the effect of FASD on the area of callosal and cortical parcels by considering age, sex, and brain size as linear covariates. The surface proportion of the corresponding cortical parcel was introduced as an additional covariate. We performed a normative analysis to identify subjects with an abnormally small parcel. Results: All callosal and cortical parcels were smaller in the FASD group compared with controls. When accounting for age, sex, and brain size, only the postcentral (η2 = 6.5%, pFDR = 0.032) callosal parcel and % of the cortical parcel (η2 = 8.9%, pFDR = 0.007) were still smaller. Adding the surface proportion (%) of the corresponding cortical parcel to the model, only the occipital parcel was persistently reduced in the FASD group (η2 = 5.7%, pFDR = 0.014). In the normative analysis, we found an excess of subjects with FASD with abnormally small precentral and postcentral (peri-isthmic) and posterior-splenial parcels (pFDR < 0.05). Conclusion: The objective sulcal and connectivity-based method of CC parcellation proved to be useful not only in confirming posterior-splenial damage in FASD but also in the narrowing of the peri-isthmic region strongly associated with a specific size reduction in the corresponding postcentral cortical region (postcentral gyrus). The normative analysis showed that this type of callosal segmentation could provide a clinically relevant neuroanatomical endophenotype, even in NS-FASD.

14.
J Affect Disord ; 325: 224-230, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608853

RESUMEN

BACKGROUND: Analyzing cortical folding may provide insight into the biological underpinnings of neurodevelopmental diseases. A neurodevelopmental subtype of bipolar disorders (BD-ND) has been characterized by the combination of early age of onset and psychotic features. We investigate potential cortical morphology differences associated with this subtype. We analyze, for the first time in bipolar disorders, the sulcal pits, the deepest points in each fold of the cerebral cortex. METHODS: We extracted the sulcal pits from anatomical MRI among 512 participants gathered from 7 scanning sites. We compared the number of sulcal pits in each hemisphere as well as their regional occurrence and depth between the BD-ND subgroup (N = 184), a subgroup without neurodevelopmental features (BD, N = 77) and a group of healthy controls (HC, N = 251). RESULTS: In whole brain analysis, BD-ND group have a higher number of sulcal pits in comparison to the BD group. The local analysis revealed, after correction for multiple testing, a higher occurrence of sulcal pits in the left premotor cortex among the BD-ND subgroup compared to the BD and the HC groups. CONCLUSION: Our findings confirm that BD-ND is associated with a specific brain morphology revealed by the analysis of sulcal pits. These markers may help to better understand neurodevelopment in mood disorder and stratify patients according to a pathophysiological hypothesis.


Asunto(s)
Trastorno Bipolar , Corteza Motora , Trastornos del Neurodesarrollo , Humanos , Trastorno Bipolar/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Encéfalo , Imagen por Resonancia Magnética
15.
Ann Phys Rehabil Med ; 65(6): 101599, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34718191

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) lesions are known to evolve over time, but the duration and consequences of cerebral remodelling are unclear. Degenerative mechanisms occurring in the chronic phase after TBI could constitute "tertiary" lesions related to the neurological outcome. OBJECTIVE: The objective of this prospective study of severe TBI was to longitudinally evaluate the volume of white and grey matter structures and white matter integrity with 2 time-point multimodal MRI. METHODS: Longitudinal MRI follow-up was obtained for 11 healthy controls (HCs) and 22 individuals with TBI (mean [SD] 60 [15] months after injury) along with neuropsychological assessments. TBI individuals were classified in the "favourable" recovery group (Glasgow Outcome Scale Extended [GOSE] 6-8) and "unfavourable" recovery group (GOSE 3-5) at 5 years. Variation in brain volumes (3D T1-weighted image) and white matter integrity (diffusion tensor imaging [DTI]) were quantitatively assessed over time and used to predict neurological outcome. RESULTS: TBI individuals showed a marked decrease in volumes of whole white matter (median -11.4% [interquartile range -5.8; -14.6]; p < 0.001) and deep grey nuclear structures (-17.1% [-10.6; -20.5]; p < 0.001). HCs did not show any significant change over the same time period. Median volumetric loss in several brain regions was higher with GOSE 3-5 than 6-8. These lesions were associated with lower fractional anisotropy and higher mean diffusivity at baseline. Volumetric variations were positively correlated with normalized fractional anisotropy and negatively with normalized mean diffusivity at baseline and follow-up. A computed predictive model with baseline DTI showed good accuracy to predict neurological outcome (area under the receiver operating characteristic curve 0.82 [95% confidence interval 0.81-0.83]) CONCLUSIONS: We characterised the striking atrophy of deep brain structures after severe TBI. DTI imaging in the subacute phase can predict the occurrence and localization of these tertiary lesions as well as long-term neurological outcome. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00577954. Registered on October 2006.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen de Difusión Tensora , Humanos , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Estudios de Seguimiento , Imagen por Resonancia Magnética , Estudios Prospectivos , Estudios de Casos y Controles
16.
Biol Psychiatry ; 92(4): 299-313, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35489875

RESUMEN

BACKGROUND: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. METHODS: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. RESULTS: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. CONCLUSIONS: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Bipolar , Trastorno Depresivo Mayor , Nacimiento Prematuro , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Corteza Cerebral , Niño , Trastorno Depresivo Mayor/patología , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Embarazo , Nacimiento Prematuro/patología
17.
Neuroimage ; 56(2): 766-81, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20542124

RESUMEN

Recently, several high dimensional classification methods have been proposed to automatically discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls (CN) based on T1-weighted MRI. However, these methods were assessed on different populations, making it difficult to compare their performance. In this paper, we evaluated the performance of ten approaches (five voxel-based methods, three methods based on cortical thickness and two methods based on the hippocampus) using 509 subjects from the ADNI database. Three classification experiments were performed: CN vs AD, CN vs MCIc (MCI who had converted to AD within 18 months, MCI converters - MCIc) and MCIc vs MCInc (MCI who had not converted to AD within 18 months, MCI non-converters - MCInc). Data from 81 CN, 67 MCInc, 39 MCIc and 69 AD were used for training and hyperparameters optimization. The remaining independent samples of 81 CN, 67 MCInc, 37 MCIc and 68 AD were used to obtain an unbiased estimate of the performance of the methods. For AD vs CN, whole-brain methods (voxel-based or cortical thickness-based) achieved high accuracies (up to 81% sensitivity and 95% specificity). For the detection of prodromal AD (CN vs MCIc), the sensitivity was substantially lower. For the prediction of conversion, no classifier obtained significantly better results than chance. We also compared the results obtained using the DARTEL registration to that using SPM5 unified segmentation. DARTEL significantly improved six out of 20 classification experiments and led to lower results in only two cases. Overall, the use of feature selection did not improve the performance but substantially increased the computation times.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/patología , Trastornos del Conocimiento/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/clasificación , Trastornos del Conocimiento/clasificación , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
18.
JAMA Psychiatry ; 78(1): 47-63, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857118

RESUMEN

IMPORTANCE: Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. OBJECTIVE: To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. DESIGN, SETTING, AND PARTICIPANTS: Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. MAIN OUTCOMES AND MEASURES: Interregional profiles of group difference in cortical thickness between cases and controls. RESULTS: A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. CONCLUSIONS AND RELEVANCE: In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno del Espectro Autista/patología , Trastorno Bipolar/patología , Corteza Cerebral/patología , Trastorno Depresivo Mayor/patología , Desarrollo Fetal/fisiología , Expresión Génica/fisiología , Desarrollo Humano/fisiología , Trastorno Obsesivo Compulsivo/patología , Esquizofrenia/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno Bipolar/diagnóstico por imagen , Estudios de Casos y Controles , Corteza Cerebral/citología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Niño , Preescolar , Estudios de Cohortes , Biología Computacional , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Análisis de Componente Principal , Esquizofrenia/diagnóstico por imagen , Adulto Joven
19.
Med Image Anal ; 66: 101749, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32877840

RESUMEN

Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires new numerical tools to establish inter-subject correspondences. Here, we address this issue by taking advantage of the geometrical information carried by sulcal basins that are the local patches of surfaces surrounding each sulcal pit. Our framework consists in two phases. First, we present a new method to generate a population-specific atlas of this sulcal basins organi- zation as a fold-level parcellation of the cortical surface. Then, we address the labeling of individual sulcal pits and corresponding basins with respect to this atlas. To assess their validity, we applied these methodological advances on two different populations of healthy subjects. The first database of 137 adults allowed us to compare our method to the state-of-the-art and the second database of 209 children, aged between 0 and 18 years, illustrates the adaptability and relevance of our method in the context of pediatric data showing strong variations in cortical volume and folding.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Niño , Preescolar , Humanos , Lactante , Recién Nacido
20.
Commun Biol ; 3(1): 510, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934300

RESUMEN

Cortical folds help drive the parcellation of the human cortex into functionally specific regions. Variations in the length, depth, width, and surface area of these sulcal landmarks have been associated with disease, and may be genetically mediated. Before estimating the heritability of sulcal variation, the extent to which these metrics can be reliably extracted from in-vivo MRI must be established. Using four independent test-retest datasets, we found high reliability across the brain (intraclass correlation interquartile range: 0.65-0.85). Heritability estimates were derived for three family-based cohorts using variance components analysis and pooled (total N > 3000); the overall sulcal heritability pattern was correlated to that derived for a large population cohort (N > 9000) calculated using genomic complex trait analysis. Overall, sulcal width was the most heritable metric, and earlier forming sulci showed higher heritability. The inter-hemispheric genetic correlations were high, yet select sulci showed incomplete pleiotropy, suggesting hemisphere-specific genetic influences.


Asunto(s)
Encéfalo/ultraestructura , Corteza Cerebral/fisiología , Imagen por Resonancia Magnética , Adulto , Anciano , Encéfalo/fisiología , Mapeo Encefálico , Corteza Cerebral/ultraestructura , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA