Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Respir Cell Mol Biol ; 60(6): 687-694, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30571139

RESUMEN

Mucus overproduction is a major contributor to morbidity and mortality in asthma. Mucus overproduction is induced by orchestrated actions of multiple factors that include inflammatory cytokines and γ-aminobutyric acid (GABA). GABA is produced only by pulmonary neuroendocrine cells (PNECs) in the mouse lung. Recent studies in a neonatal mouse model of allergic inflammation have shown that PNECs play an essential role in mucus overproduction by GABA hypersecretion. Whether PNECs mediate dysregulated GABA signaling for mucus overproduction in asthma is unknown. In this study, we characterized the cellular source of GABA in the lungs of nonhuman primates and humans and assessed GABA secretion and signaling in primate disease models. We found that like in mice, PNECs were the major source of GABA in primate lungs. In addition, an infant nonhuman primate model of asthma exhibited an increase in GABA secretion. Furthermore, subjects with asthma had elevated levels of expression of a subset of GABA type α (GABAα) and type ß (GABAß) receptors in airway epithelium compared with those of healthy control subjects. Last, employing a normal human bronchial epithelial cell model of preinduced mucus overproduction, we showed pharmaceutical blockade of GABAα and GABAß receptor signaling reversed the effect of IL-13 on MUC5AC gene expression and goblet cell proliferation. Together, our data demonstrate an evolutionarily conserved intraepithelial GABA signaling that, in concert with IL-13, plays an essential role in mucus overproduction. Our findings may offer new strategies to ameliorate mucus overproduction in patients with asthma by targeting PNEC secretion and GABA signaling.


Asunto(s)
Células Caliciformes/patología , Pulmón/patología , Células Neuroendocrinas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Asma/patología , Bronquios/patología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Humanos , Hiperplasia , Interleucina-13/metabolismo , Macaca mulatta , Moco/metabolismo , Receptores de GABA/metabolismo , Transducción de Señal
2.
FASEB J ; 31(9): 4117-4128, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28566470

RESUMEN

Pulmonary neuroendocrine cells (PNECs) are the only innervated airway epithelial cells. To what extent neural innervation regulates PNEC secretion and function is unknown. Here, we discover that neurotrophin 4 (NT4) plays an essential role in mucus overproduction after early life allergen exposure by orchestrating PNEC innervation and secretion of GABA. We found that PNECs were the only cellular source of GABA in airways. In addition, PNECs expressed NT4 as a target-derived mechanism underlying PNEC innervation during development. Early life allergen exposure elevated the level of NT4 and caused PNEC hyperinnervation and nodose neuron hyperactivity. Associated with aberrant PNEC innervation, the authors discovered that GABA hypersecretion was required for the induction of mucin Muc5ac expression. In contrast, NT4-/- mice were protected from allergen-induced mucus overproduction and changes along the nerve-PNEC axis without any defects in inflammation. Last, GABA installation restored mucus overproduction in NT4-/- mice after early life allergen exposure. Together, our findings provide the first evidence for NT4-dependent neural regulation of PNEC secretion of GABA in a neonatal disease model. Targeting the nerve-PNEC axis may be a valid treatment strategy for mucus overproduction in airway diseases, such as childhood asthma.-Barrios, J., Patel, K. R., Aven, L., Achey, R., Minns, M. S., Lee, Y., Trinkaus-Randall, V. E., Ai, X. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion.


Asunto(s)
Alérgenos/inmunología , Regulación de la Expresión Génica/inmunología , Hipersensibilidad/metabolismo , Moco/metabolismo , Células Neuroendocrinas/metabolismo , Ovalbúmina/inmunología , Animales , Calcio , Ratones Endogámicos C57BL , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
3.
FASEB J ; 28(2): 897-907, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24221086

RESUMEN

Children who are exposed to environmental respiratory insults often develop asthma that persists into adulthood. In this study, we used a neonatal mouse model of ovalbumin (OVA)-induced allergic airway inflammation to understand the long-term effects of early childhood insults on airway structure and function. We showed that OVA sensitization and challenge in early life led to a 2-fold increase in airway smooth muscle (ASM) innervation (P<0.05) and persistent airway hyperreactivity (AHR). In contrast, OVA exposure in adult life elicited short-term AHR without affecting innervation levels. We found that postnatal ASM innervation required neurotrophin (NT)-4 signaling through the TrkB receptor and that early-life OVA exposure significantly elevated NT4 levels and TrkB signaling by 5- and 2-fold, respectively, to increase innervation. Notably, blockade of NT4/TrkB signaling in OVA-exposed pups prevented both acute and persistent AHR without affecting baseline airway function or inflammation. Furthermore, biophysical assays using lung slices and isolated cells demonstrated that NT4 was necessary for hyperreactivity of ASM induced by early-life OVA exposure. Together, our findings show that the NT4/TrkB-dependent increase in innervation plays a critical role in the alteration of the ASM phenotype during postnatal growth, thereby linking early-life allergen exposure to persistent airway dysfunction.


Asunto(s)
Músculo Liso/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptor trkB/metabolismo , Alérgenos/inmunología , Animales , Asma , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Ratones , Microscopía Confocal , Músculo Liso/efectos de los fármacos , Factores de Crecimiento Nervioso/genética , Ovalbúmina/inmunología , Receptor trkB/genética
4.
J Neurosci ; 31(43): 15407-15, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031887

RESUMEN

Dysfunctional neural control of airway smooth muscle (ASM) is involved in inflammatory diseases, such as asthma. However, neurogenesis in the lung is poorly understood. This study uses mouse models to investigate developmental mechanisms of ASM innervation, a process that is highly coordinated with ASM formation during lung branching morphogenesis. We show that brain-derived neurotrophic factor (BDNF) is an essential ASM-derived signal for innervation. Although BDNF mRNA expression is temporally dissociated with ASM formation and innervation, BDNF protein is coordinately produced through post-transcriptional suppression by miR-206. Using a combination of chemical and genetic approaches to modulate sonic hedgehog (Shh) signaling, a pathway essential for lung branching and ASM formation, we show that Shh signaling blocks miR-206 expression, which in turn increases BDNF protein expression. Together, our work uncovers a functional cascade that involves Shh, miR-206 and BDNF to coordinate ASM formation and innervation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas Hedgehog/metabolismo , MicroARNs/metabolismo , Músculo Liso/fisiología , Sistema Respiratorio/anatomía & histología , Sistema Respiratorio/inervación , Factores de Edad , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Hedgehog/genética , Ratones , Ratones Transgénicos , MicroARNs/genética , Músculo Liso/inervación , ARN Mensajero/metabolismo , Sistema Respiratorio/embriología , Transducción de Señal/genética , Tubulina (Proteína)/metabolismo
5.
Sci Rep ; 5: 13865, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26353920

RESUMEN

We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress.


Asunto(s)
Estrés Fisiológico , Estrés Psicológico , Sistema Nervioso Simpático/fisiología , Afecto , Biomarcadores , Cognición , Estimulación Eléctrica , Femenino , Frecuencia Cardíaca , Humanos , Hidrocortisona/metabolismo , Masculino , Desempeño Psicomotor , Tiempo de Reacción , Saliva/metabolismo , Piel/inervación , Fenómenos Fisiológicos de la Piel , Termografía , alfa-Amilasas/metabolismo
6.
Organogenesis ; 9(3): 194-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23974176

RESUMEN

During embryogenesis, the development of the respiratory tract is closely associated with the formation of an extensive neuronal network. While the topic of respiratory innervation is not new, and similar articles were published previously, recent studies using animal models and genetic tools are breathing new life into the field. In this review, we focus on signaling mechanisms that underlie innervation of the embryonic respiratory tract.


Asunto(s)
Desarrollo Embrionario , Sistema Respiratorio , Transducción de Señal , Animales , Factor Neurotrófico Derivado del Encéfalo , Humanos , Ratones , Factores de Crecimiento Nervioso , Neuronas , Ratas , Sistema Respiratorio/anatomía & histología , Sistema Respiratorio/embriología , Sistema Respiratorio/inervación
7.
PLoS One ; 8(9): e74469, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040256

RESUMEN

Phenotypes of lung smooth muscle cells in health and disease are poorly characterized. This is due, in part, to a lack of methodologies that allow for the independent and direct isolation of bronchial smooth muscle cells (BSMCs) and vascular smooth muscle cells (VSMCs) from the lung. In this paper, we describe the development of a bi-fluorescent mouse that permits purification of these two cell populations by cell sorting. By subjecting this mouse to an acute allergen based-model of airway inflammation that exhibits many features of asthma, we utilized this tool to characterize the phenotype of so-called asthmatic BSMCs. First, we examined the biophysical properties of single BSMCs from allergen sensitized mice and found increases in basal tone and cell size that were sustained ex vivo. We then generated for the first time, a comprehensive characterization of the global gene expression changes in BSMCs isolated from the bi-fluorescent mice with allergic airway inflammation. Using statistical methods and pathway analysis, we identified a number of differentially expressed mRNAs in BSMCs from allergen sensitized mice that code for key candidate proteins underlying changes in matrix formation, contractility, and immune responses. Ultimately, this tool will provide direction and guidance for the logical development of new markers and approaches for studying human lung smooth muscle.


Asunto(s)
Asma/genética , Bronquios/metabolismo , Hiperreactividad Bronquial/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , Proteoma/inmunología , Alérgenos/inmunología , Animales , Asma/inmunología , Asma/patología , Bronquios/inmunología , Bronquios/patología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/patología , Tamaño de la Célula , Modelos Animales de Enfermedad , Fluorescencia , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inmunización , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/inmunología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/inmunología , Miocitos del Músculo Liso/patología , Ovalbúmina/inmunología , Proteoma/genética , ARN Mensajero/genética , ARN Mensajero/inmunología , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA