RESUMEN
IL-6 mediates broad physiological and pathological effects through its receptor signal transducing unit gp130. Due to the reportedly wide cellular expression of gp130, IL-6 is thought to signal ubiquitously via gp130 complex formation with membrane-bound IL-6Rα or soluble IL-6Rα. gp130 signaling primarily induces p-STAT3 and p-STAT1. In contrast to the previous dogma, we show in this article that circulating mouse and human granulocytes are unable to induce p-STAT3 or p-STAT1 after stimulation with IL-6 or an IL-6/soluble IL-6R complex. Furthermore, we demonstrate that this is due to a lack of gp130 expression on mouse and human granulocytes, despite their expression of membrane-bound IL-6R. Importantly, the absence of gp130 is not only a feature of mature granulocytes in healthy individuals, it is also observed after allogeneic stem cell transplantation. Moreover, granulocyte gp130 expression is lost during maturation, because granulocyte-monocyte progenitor cells express gp130 and respond to IL-6. Given that granulocytes constitute 50-70% of circulating leukocytes, this indicates a significantly smaller scope of IL-6 signaling than previously anticipated and has important implications for therapeutic IL-6 inhibition and the mechanisms of action thereof.
Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Granulocitos/metabolismo , Interleucina-6/metabolismo , Animales , Femenino , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Neutrófilos/metabolismo , Receptores de Interleucina-6/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiologíaRESUMEN
BACKGROUND: Interleukin 6 mediates graft-versus-host disease (GVHD) in experimental allogeneic stem-cell transplantation (allogeneic SCT) and represents an attractive therapeutic target. We aimed to assess whether the humanised anti-interleukin-6 receptor monoclonal antibody, tocilizumab, could attenuate the incidence of acute GVHD. METHODS: We undertook a single-group, single-institution phase 1/2 study at the Royal Brisbane and Women's Hospital Bone Marrow Transplantation unit, QLD, Australia. Eligible patients were 18-65 years old and underwent T-replete HLA-matched allogeneic SCT with either total body irradiation-based myeloablative or reduced-intensity conditioning from unrelated or sibling donors. One intravenous dose of tocilizumab (8 mg/kg, capped at 800 mg, over 60 mins' infusion) was given the day before allogeneic SCT along with standard GVHD prophylaxis (cyclosporin [5 mg/kg per day on days -1 to +1, then 3 mg/kg per day to maintain therapeutic levels (trough levels of 140-300 ng/mL) for 100 days plus methotrexate [15 mg/m(2) on day 1, then 10 mg/m(2) on days 3, 6, and 11]). The primary endpoint was incidence of grade 2-4 acute GVHD at day 100, assessed and graded as per the Seattle criteria. Immunological profiles were compared with a non-randomised group of patients receiving allogeneic SCT, but not treated with tocilizumab. This trial is registered with the Australian and New Zealand Clinical Trials Registry, number ACTRN12612000726853. FINDINGS: Between Jan 19, 2012, and Aug 27, 2013, 48 eligible patients receiving cyclosporin and methotrexate as GVHD prophylaxis were enrolled into the study. The incidence of grade 2-4 acute GVHD in patients treated with tocilizumab at day 100 was 12% (95% CI 5-24), and the incidence of grade 3-4 acute GVHD was 4% (1-13). Grade 2-4 acute GVHD involving the skin developed in five (10%) patients of 48 treated with tocilizumab, involving the gastrointestinal tract in four (8%) patients; there were no reported cases involving the liver. Low incidences of grade 2-4 acute GVHD were noted in patients receiving both myeloablative total body irradiation-based conditioning (12% [95% CI 2-34) and fludarabine and melphalan reduced-intensity conditioning (12% [4-27]). Immune reconstitution was preserved in recipients of interleukin-6 receptor inhibition, but qualitatively modified with suppression of known pathogenic STAT3-dependent pathways. INTERPRETATION: Interleukin 6 is the main detectable and dysregulated cytokine secreted after allogeneic SCT and its inhibition is a potential new and simple strategy to protect from acute GVHD despite robust immune reconstitution; a randomised, controlled trial assessing tocilizumab in addition to standard GVHD prophylaxis in these patients is warranted. FUNDING: National Health and Medical Research Council and Queensland Health.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Neoplasias Hematológicas/complicaciones , Interleucina-6/antagonistas & inhibidores , Trasplante de Células Madre/efectos adversos , Adolescente , Adulto , Anciano , Femenino , Estudios de Seguimiento , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/mortalidad , Neoplasias Hematológicas/mortalidad , Neoplasias Hematológicas/terapia , Humanos , Interleucina-6/inmunología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Estudios Prospectivos , Tasa de Supervivencia , Trasplante Homólogo , Adulto JovenRESUMEN
Allogeneic stem cell transplantation (SCT) is a curative therapy for patients with hematological malignancies related largely to an immunological graft-versus-leukemia (GVL) effect mediated by donor T cells and natural killer cells. Relapse of disease after SCT represents failure of GVL and is now the major cause of treatment failure. We sought to augment GVL effects in patients (n = 29) relapsing after SCT in a prospective phase I/II clinical trial of dose-escalated pegylated interferon-2α (peg-IFNα). The administration of peg-IFNα after reinduction chemotherapy, with or without subsequent donor lymphocyte infusion (DLI), resulted in a 2-year overall survival (OS) of 31% (95% confidence interval, 17.3%-49.2%), which rejects the null hypothesis of 7% generated by observations in an institutional historical cohort. As expected, peg-IFNα was associated with graft-versus-host disease (GVHD) and hematological toxicity, which was manageable with scheduled dose modifications. Progression-free survival (PFS) was greatest in patients who experienced GVHD, although the majority of those patients still eventually progressed. Higher PFS and OS were associated with pretreatment proportions of immune cell populations with regulatory function, including mucosal invariant T cells, regulatory T cells, and plasmacytoid dendritic cells, independent of any association with GVHD. Peg-IFNα administration after relapse thus constitutes a logical strategy to invoke GVL effects and should be studied in a larger, multicenter cohort. This trial was registered at www.anzctr.org.au as #ACTRN12612000728831.
Asunto(s)
Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Interferón-alfa/efectos adversos , Polietilenglicoles/efectos adversos , Adulto , Anciano , Biomarcadores , Femenino , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/mortalidad , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/tratamiento farmacológico , Humanos , Interferón-alfa/uso terapéutico , Masculino , Persona de Mediana Edad , Polietilenglicoles/uso terapéutico , Modelos de Riesgos Proporcionales , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/uso terapéutico , Acondicionamiento Pretrasplante , Trasplante Homólogo , Adulto JovenRESUMEN
PURPOSE: Inducible caspase 9 (iCasp9) is a cellular safety switch that can make T-cell therapy safer. The purpose of this phase I trial was to investigate the use of iCasp9-transduced T-cell addback in adult patients undergoing haploidentical stem cell transplantation for high-risk hematologic malignancies. PATIENTS AND METHODS: Patients undergoing myeloablative, CD34-selected haploidentical stem cell transplantation were treated with 0.5-1.0 × 106/kg donor-derived iCasp9-transduced T cells on day +25 or 26 post-transplant, with additional doses allowed for disease relapse, infection, or mixed chimerism. RESULTS: Three patients were enrolled. iCasp9-transduced T cells were readily detectable by 4 weeks post-infusion in all patients and remained at high level (114 cells/µL, 11% of T cells) in 1 patient alive at 3.6 years. One patient developed donor-derived Epstein-Barr virus-associated post-transplant lymphoproliferative disease (EBV-PTLD), which was followed by a marked expansion of iCasp9 T cells and cytokine release syndrome (CRS). These iCasp9-transduced T cells infiltrated the affected lymph nodes and secreted IFNγ and IL-10. They peaked at 1,848 cells/µL and were found to be monoclonal by T-cell receptor (TCR) clonotype and oligoclonal by viral integrant analysis, representing a 6-log in vivo expansion of the dominant T-cell clone. These T cells were not autonomous and contracted with the resolution of EBV-PTLD, which did not recur. CONCLUSIONS: iCasp9-transduced T cells could persist long-term. They retained very high in vivo clonotypic proliferative capacity and function, and could cause CRS in response to de novo lymphoma development.