Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 142: 105445, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37414127

RESUMEN

In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet. This, to obtain best chances of detecting heterotopia. We found what appears to be very small heterotopia in 4 out of the 8 PTU-exposed pups. Although the incidence rate could suggest some utility for this endpoint, the small size of the ectopic neuronal clusters at maximum hypothyroidism excludes the utility of heterotopia in mouse toxicity studies aimed to detect TH system disrupting chemicals. On the other hand, parvalbumin expression was manifestly lower in the cortex of hypothyroid mouse offspring demonstrating that offspring TH-deficiency caused an effect on the developing brain. Based on overall results, we conclude that heterotopia formation in mice is not a useful toxicological endpoint for examining TH-mediated developmental neurotoxicity.


Asunto(s)
Hipotiroidismo , Heterotopia Nodular Periventricular , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Animales , Ratas , Ratones , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Exposición Materna , Hormonas Tiroideas/metabolismo , Hipotiroidismo/inducido químicamente , Hipotiroidismo/metabolismo , Propiltiouracilo/toxicidad
2.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354186

RESUMEN

The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood-brain and blood-placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.


Asunto(s)
Disruptores Endocrinos/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Hormonas Tiroideas/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Descubrimiento de Drogas , Disruptores Endocrinos/química , Humanos , Técnicas In Vitro , Internet
3.
Arch Toxicol ; 93(2): 253-272, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30430187

RESUMEN

Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.


Asunto(s)
Canal Anal/anatomía & histología , Genitales Masculinos/anatomía & histología , Efectos Tardíos de la Exposición Prenatal , Antagonistas de Andrógenos/toxicidad , Animales , Disruptores Endocrinos/toxicidad , Femenino , Humanos , Masculino , Embarazo , Roedores , Diferenciación Sexual/efectos de los fármacos , Testosterona/fisiología , Pruebas de Toxicidad , Xenobióticos/toxicidad
4.
Arch Toxicol ; 89(2): 269-87, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25618548

RESUMEN

A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.


Asunto(s)
Encéfalo/efectos de los fármacos , Feto/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Pruebas de Toxicidad/métodos , Guías como Asunto , Humanos , Medición de Riesgo
5.
Reproduction ; 147(4): 477-87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24298045

RESUMEN

Bisphenol A (BPA) is widely detected in human urine and blood. BPA has been reported to impair many endpoints for reproductive and neurological development; however, it is controversial whether BPA has effects in the microgram per kilogram dose range. The aim of the current study was to examine the influence of BPA on early sexual development in male and female rats at dose levels covering both regulatory no observed adverse effect levels (NOAELs) (5 and 50 mg/kg bw per day) as well as doses in the microgram per kilogram dose range (0.025 and 0.25 mg/kg bw per day). Time-mated Wistar rats (n=22) were gavaged during pregnancy and lactation from gestation day 7 to pup day 22 with 0, 0.025, 0.25, 5 or 50 mg/kg bw per day BPA. From 0.250 mg/kg and above, male anogenital distance (AGD) was significantly decreased, whereas decreased female AGD was seen from 0.025 mg/kg bw per day and above. Moreover, the incidence of nipple retention in males appeared to increase dose relatedly and the increase was statistically significant at 50 mg/kg per day. No significant changes in reproductive organ weights in the 16-day-old males and females and no signs of maternal toxicity were seen. The decreased AGD at birth in both sexes indicates effects on prenatal sexual development and provides new evidence of low-dose adverse effects of BPA in rats in the microgram per kilogram dose range. The NOAEL in this study is clearly below 5 mg/kg for BPA, which is used as the basis for establishment of the current tolerable daily intake (TDI) by EFSA; thus a reconsideration of the current TDI of BPA appears warranted.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Procesos de Determinación del Sexo/efectos de los fármacos , Animales , Animales Recién Nacidos , Compuestos de Bencidrilo/administración & dosificación , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Fenoles/administración & dosificación , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Wistar , Reproducción/efectos de los fármacos , Maduración Sexual/efectos de los fármacos
6.
Reproduction ; 147(4): 465-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24287426

RESUMEN

This study examined late-life effects of perinatal exposure of rats to a mixture of endocrine-disrupting contaminants. Four groups of 14 time-mated Wistar rats were exposed by gavage from gestation day 7 to pup day 22 to a mixture of 13 anti-androgenic and estrogenic chemicals including phthalates, pesticides, u.v.-filters, bisphenol A, parabens, and the drug paracetamol. The groups received vehicle (control), a mixture of all 13 chemicals at 150-times (TotalMix150) or 450-times (TotalMix450) high-end human exposure, or 450-times a mixture of nine predominantly anti-androgenic chemicals (AAMix450). Onset of puberty and estrous cyclicity at 9 and 12 months of age were assessed. Few female offspring showed significantly regular estrus cyclicity at 12 months of age in the TotalMix450 and AAMix450 groups compared with controls. In 19-month-old male offspring, epididymal sperm counts were lower than controls, and in ventral prostate an overrepresentation of findings related to hyperplasia was observed in exposed groups compared with controls, particularly in the group dosed with anti-androgens. A higher incidence of pituitary adenoma at 19 months of age was found in males and females in the AAMix450 group. Developmental exposure of rats to the highest dose of a human-relevant mixture of endocrine disrupters induced adverse effects late in life, manifested as earlier female reproductive senescence, reduced sperm counts, higher score for prostate atypical hyperplasia, and higher incidence of pituitary tumors. These delayed effects highlight the need for further studies on the role of endocrine disrupters in hormone-related disorders in aging humans.


Asunto(s)
Envejecimiento/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Genitales/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Reproducción/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Acetaminofén/toxicidad , Animales , Compuestos de Bencidrilo/toxicidad , Alcanfor/análogos & derivados , Alcanfor/toxicidad , Cinamatos/toxicidad , Femenino , Genitales/embriología , Genitales/crecimiento & desarrollo , Masculino , Parabenos/toxicidad , Fenoles/toxicidad , Embarazo , Ratas , Ratas Wistar
7.
Reproduction ; 147(4): 489-501, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24298046

RESUMEN

Reproductive toxicity was investigated in rats after developmental exposure to a mixture of 13 endocrine-disrupting contaminants, including pesticides, plastic and cosmetic ingredients, and paracetamol. The mixture was composed on the basis of information about high-end human exposures, and the dose levels reflecting 100, 200, and 450 times this exposure were tested. The compounds were also grouped according to their estrogenicity or anti-androgenicity, and their joint effects were tested at two different doses, with each group reflecting 200 or 450 times human exposure. In addition, a single paracetamol dose was tested (350 mg/kg per day). All exposures and a vehicle were administered by oral gavage to time-mated Wistar dams rats throughout gestation and lactation, and their offspring were assessed for reproductive effects at birth and in prepuberty. The mixture doses, which included the anti-androgenic compounds, affected the male offspring by causing decreased anogenital distance, increased nipple retention (NR), and reduced ventral prostate weights, at both medium and high doses. In addition, the weights of the levator ani/bulbocavernosus muscle (LABC) were decreased at the high dose of anti-androgen mixture. No effects were seen after exposure to the estrogenic chemicals alone, whereas males exposed solely to paracetamol showed decreased LABC weights and increased NR. Thus adverse reproductive effects were observed at mixtures reflecting 200 times high-end human exposure, which is relatively close to the safety margin covered by the regulatory uncertainty factor of 100. This suggests that highly exposed human population groups may not be sufficiently protected against mixtures of endocrine-disrupting chemicals.


Asunto(s)
Mezclas Complejas/toxicidad , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Crecimiento y Desarrollo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Animales Lactantes , Femenino , Masculino , Parto/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar , Maduración Sexual/efectos de los fármacos , Destete
8.
Toxicology ; 505: 153822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685447

RESUMEN

Thyroid hormone (TH) system disrupting compounds can impair brain development by perturbing TH action during critical life stages. Human exposure to TH system disrupting chemicals is therefore of great concern. To better protect humans against such chemicals, sensitive test methods that can detect effects on the developing brain are critical. Worryingly, however, current test methods are not sensitive and specific towards TH-mediated effects. To address this shortcoming, we performed RNA-sequencing of rat brains developmentally exposed to two different thyroperoxidase (TPO) inhibiting compounds, the medical drug methimazole (MMI) or the pesticide amitrole. Pregnant and lactating rats were exposed to 8 and 16 mg/kg/day(d) MMI or 25 and 50 mg/kg/d amitrole from gestational day 7 until postnatal day 16. Bulk-RNA-seq was performed on hippocampus from the 16-day old male pups. MMI and amitrole caused pronounced changes to the transcriptomes; 816 genes were differentially expressed, and 425 gene transcripts were similarly affected by both chemicals. Functional terms indicate effects from key cellular functions to changes in cell development, migration and differentiation of several cell populations. Of the total number of DEGs, 106 appeared to form a consistent transcriptional fingerprint of developmental hypothyroidism as they were similarly and dose-dependently expressed across all treatment groups. Using a filtering system, we identified 20 genes that appeared to represent the most sensitive, robust and dose-dependent markers of altered TH-mediated brain development. These markers provide inputs to the adverse outcome pathway (AOP) framework where they, in the context of linking TPO inhibiting compounds to adverse cognitive function, can be used to assess altered gene expression in the hippocampus in rat toxicity studies.


Asunto(s)
Hipocampo , Metimazol , Animales , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Metimazol/toxicidad , Embarazo , Ratas , Yoduro Peroxidasa/genética , Transcriptoma/efectos de los fármacos , Antitiroideos/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Inhibidores Enzimáticos/farmacología
9.
Open Res Eur ; 4: 68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883262

RESUMEN

The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption. EDCs also require effective regulatory frameworks, especially as the current move towards greater reliance on non-animal methods in chemical testing puts to test the current paradigm for EDC identification, which requires that an adverse effect is observed in an intact organism. Although great advances have been made in the field of predictive toxicology, disruption to the endocrine system and subsequent adverse health effects may prove particularly difficult to predict without traditional animal models. The MERLON project seeks to expedite progress by integrating multispecies molecular research, new approach methodologies (NAMs), human clinical epidemiology, and systems biology to furnish mechanistic insights and explore ways forward for NAM-based identification of EDCs. The focus is on sexual development and function, from foetal sex differentiation of the reproductive system through mini-puberty and puberty to sexual maturity. The project aims are geared towards closing existing knowledge gaps in understanding the effects of EDCs on human health to ultimately support effective regulation of EDCs in the European Union and beyond.

10.
Toxicol Appl Pharmacol ; 272(3): 757-66, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23954766

RESUMEN

Two pesticide mixtures were investigated for potential endocrine activity. Mix 3 consisted of bitertanol, propiconazole, and cypermethrin, and Mix 5 included malathion and terbuthylazine in addition to the three pesticides in Mix 3. All five single pesticides and the two mixtures were investigated for their ability to affect steroidogenesis in vitro in H295R cells. The pesticides alone and both mixtures affected steroidogenesis with both mixtures causing increase in progesterone and decrease in testosterone. For Mix 5 an increase in estradiol was seen as well, indicating increased aromatase activity. The two mixtures were also investigated in pregnant rats dosed from gestational day 7 to 21, followed by examination of dams and fetuses. Decreased estradiol and reduced placental testosterone were seen in dams exposed to Mix 5. Also a significant increase in aromatase mRNA-levels in female adrenal glands was found for Mix5. However, either of the two mixtures showed any effects on fetal hormone levels in plasma or testis, or on anogenital distance. Overall, potential aromatase induction was found for Mix 5 both in vitro and in vivo, but not for Mix 3, an effect likely owed to terbuthylazine in Mix 5. However, the hormonal responses in vitro were only partly reflected in vivo, probably due to some toxicokinetic issues, as the pesticide levels in the amniotic fluid also were found to be negatively affected by the number of compounds present in the mixtures. Nonetheless, the H295R assay gives hints on conceivable interference with steroidogenesis, thus generating hypotheses on in vivo effects.


Asunto(s)
Disruptores Endocrinos/toxicidad , Estradiol/metabolismo , Plaguicidas/toxicidad , Efectos Tardíos de la Exposición Prenatal/metabolismo , Progesterona/metabolismo , Testosterona/metabolismo , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/química , Femenino , Humanos , Masculino , Plaguicidas/química , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Distribución Aleatoria , Ratas , Ratas Wistar
11.
Environ Int ; 173: 107739, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805158

RESUMEN

BACKGROUND: Benzophenone-3 (BP-3) and its major metabolite benzophenone-1 (BP-1) are widely used as UV filters in sunscreens and cosmetics to prevent sunburn and skin damage, or as stabilizers to prevent photodegradation in many commercial products. As a result, their presence is ubiquitous in the environment, wildlife and humans. Based on endocrine disruption concerns, international regulatory agencies are performing a closer evaluation. OBJECTIVE AND METHODS: This work aimed to comprehensively review the available human relevant evidence for safety issues in MEDLINE/PubMed in order to create a structured database of studies, as well as to conduct an integrative analysis as part of the Human Biomonitoring for Europe (HBM4EU) Initiative. RESULTS: A total of 1,635 titles and abstracts were screened and 254 references were evaluated and tabulated in detail, and classified in different categories: i) exposure sources and predictors; ii) human biomonitoring (HBM) exposure levels to perform a meta-analysis; iii) toxicokinetic data in both experimental animals and humans; iv) in vitro and in vivo rodent toxicity studies; and v) human data on effect biomarkers and health outcomes. Our integrative analysis showed that internal peak BP-3 concentrations achieved after a single whole-body application of a commercially available sunscreen (4% w/w) may overlap with concentrations eliciting endocrine disrupting effects in vitro, and with internal concentrations causing in vivo adverse female reproductive effects in rodents that were supported by still limited human data. The adverse effects in rodents included prolonged estrous cycle, altered uterine estrogen receptor gene expression, endometrium hyperplasia and altered proliferation and histology of the mammary gland, while human data indicated menstrual cycle hormonal alterations and increased risk of uterine fibroids and endometriosis. Among the modes of action reported (estrogenic, anti-androgenic, thyroid, etc.), BP-3 and especially BP-1 showed estrogenic activity at human-relevant concentrations, in agreement with the observed alterations in female reproductive endpoints. The meta-analysis of HBM studies identified a higher concern for North Americans, showing urinary BP-3 concentrations on average 10 and 20 times higher than European and Asian populations, respectively. DISCUSSION AND CONCLUSIONS: Our work supports that these benzophenones present endocrine disrupting properties, endorsing recent European regulatory efforts to limit human exposure. The reproducible and comprehensive database generated may constitute a point of departure in future risk assessments to support regulatory initiatives. Meanwhile, individuals should not refrain from sunscreen use. Commercially available formulations using inorganic UV filters that are practically not absorbed into systemic circulation may be recommended to susceptible populations.


Asunto(s)
Cosméticos , Protectores Solares , Animales , Humanos , Femenino , Protectores Solares/efectos adversos , Monitoreo Biológico , Benzofenonas/toxicidad , Benzofenonas/análisis , Cosméticos/análisis
12.
Front Toxicol ; 5: 1189303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265663

RESUMEN

Current test strategies to identify thyroid hormone (TH) system disruptors are inadequate for conducting robust chemical risk assessment required for regulation. The tests rely heavily on histopathological changes in rodent thyroid glands or measuring changes in systemic TH levels, but they lack specific new approach methodologies (NAMs) that can adequately detect TH-mediated effects. Such alternative test methods are needed to infer a causal relationship between molecular initiating events and adverse outcomes such as perturbed brain development. Although some NAMs that are relevant for TH system disruption are available-and are currently in the process of regulatory validation-there is still a need to develop more extensive alternative test batteries to cover the range of potential key events along the causal pathway between initial chemical disruption and adverse outcomes in humans. This project, funded under the Partnership for the Assessment of Risk from Chemicals (PARC) initiative, aims to facilitate the development of NAMs that are specific for TH system disruption by characterizing in vivo mechanisms of action that can be targeted by in embryo/in vitro/in silico/in chemico testing strategies. We will develop and improve human-relevant in vitro test systems to capture effects on important areas of the TH system. Furthermore, we will elaborate on important species differences in TH system disruption by incorporating non-mammalian vertebrate test species alongside classical laboratory rat species and human-derived in vitro assays.

13.
PeerJ ; 10: e12738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036103

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are legacy compounds with continued widespread human exposure. Despite this, developmental toxicity studies of DE-71, a mixture of PBDEs, are scarce and its potential for endocrine disrupting effects in vivo is not well covered. To address this knowledge gap, we carried out a developmental exposure study with DE-71. Pregnant Wistar rat dams were exposed to 0, 40 or 60 mg/kg bodyweight/day from gestation day 7 to postnatal day 16, and both sexes were examined. Developmental exposure affected a range of reproductive toxicity endpoints. Effects were seen for both male and female anogenital distances (AGD), with exposed offspring of either sex displaying around 10% shorter AGD compared to controls. Both absolute and relative prostate weights were markedly reduced in exposed male offspring, with about 40% relative to controls. DE-71 reduced mammary gland outgrowth, especially in male offspring. These developmental in vivo effects suggest a complex effect pattern involving anti-androgenic, anti-estrogenic and maybe estrogenic mechanisms depending on tissues and developmental stages. Irrespective of the specific underlying mechanisms, these in vivo results corroborate that DE-71 causes endocrine disrupting effects and raises concern for the effects of PBDE-exposure on human reproductive health, including any potential long-term consequences of disrupted mammary gland development.


Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Animales , Femenino , Masculino , Embarazo , Ratas , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Ratas Wistar , Reproducción
14.
PLoS One ; 17(7): e0271614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35853081

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants for which human exposure remains ubiquitous. This is of concern since these chemicals can perturb development and cause adverse health effects. For instance, DE-71, a technical mixture of PBDEs, can induce liver toxicity as well as reproductive and developmental toxicity. DE-71 can also disrupt the thyroid hormone (TH) system which may induce developmental neurotoxicity indirectly. However, in developmental toxicity studies, it remains unclear how DE-71 exposure affects the offspring's thyroid hormone system and if this dose-dependently relates to neurodevelopmental effects. To address this, we performed a rat toxicity study by exposing pregnant dams to DE-71 at 0, 40 or 60 mg/kg/day during perinatal development from gestational day 7 to postnatal day 16. We assessed the TH system in both dams and their offspring, as well as potential hearing and neurodevelopmental effects in prepubertal and adult offspring. DE-71 significantly reduced serum T4 and T3 levels in both dams and offspring without a concomitant upregulation of TSH, thus inducing a hypothyroxinemia-like effect. No discernible effects were observed on the offspring's brain function when assessed in motor activity boxes and in the Morris water maze, or on offspring hearing function. Our results, together with a thorough review of the literature, suggest that DE-71 does not elicit a clear dose-dependent relationship between low serum thyroxine (T4) and effects on the rat brain in standard behavioral assays. However, low serum TH levels are in themselves believed to be detrimental to human brain development, thus we propose that we lack assays to identify developmental neurotoxicity caused by chemicals disrupting the TH system through various mechanisms.


Asunto(s)
Retardadores de Llama , Animales , Femenino , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Humanos , Embarazo , Ratas , Glándula Tiroides , Hormonas Tiroideas/farmacología , Tiroxina
15.
Toxicol Lett ; 354: 44-55, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757178

RESUMEN

Disruption of the thyroid hormone system during development can impair brain development and cause irreversible damage. Some thyroid hormone system disruptors act by inhibiting the thyroperoxidase (TPO) enzyme, which is key to thyroid hormone synthesis. For the potent TPO-inhibiting drug propylthiouracil (PTU) this has been shown to result in thyroid hormone system disruption and altered brain development in animal studies. However, an outstanding question is which chemicals beside PTU can cause similar effects on brain development and to what degree thyroid hormone insufficiency must be induced to be able to measure adverse effects in rats and their offspring. To start answering these questions, we performed a perinatal exposure study in pregnant rats with two TPO-inhibitors: the drug methimazole (MMI) and the triazole herbicide amitrole. The study involved maternal exposure from gestational day 7 through to postnatal day 22, to MMI (8 and 16 mg/kg body weight/day) or amitrole (25 and 50 mg/kg body weight/day). Both MMI and amitrole reduced serum T4 concentrations in a dose-dependent manner in dams and offspring, with a strong activation of the hypothalamic-pituitary-thyroid axis. This reduction in serum T4 led to decreased thyroid hormone-mediated gene expression in the offspring's brains and caused adverse effects on brain function, seen as hyperactivity and decreased habituation in preweaning pups. These dose-dependent effects induced by MMI and amitrole are largely the same as those observed with PTU. This demonstrates that potent TPO-inhibitors can induce effects on brain development in rats and that these effects are driven by T4 deficiency. This knowledge will aid the identification of TPO-inhibiting thyroid hormone system disruptors in a regulatory context and can serve as a starting point in search of more sensitive markers of developmental thyroid hormone system disruption.


Asunto(s)
Amitrol (Herbicida)/toxicidad , Antitiroideos/toxicidad , Inhibidores Enzimáticos/toxicidad , Metimazol/toxicidad , Actividad Motora/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Glándula Tiroides/efectos de los fármacos , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Exposición Materna/efectos adversos , Síndromes de Neurotoxicidad/fisiopatología , Embarazo , Ratas , Transducción de Señal/efectos de los fármacos , Pruebas de Función de la Tiroides
16.
Environ Pollut ; 305: 119340, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35460815

RESUMEN

Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Ácidos Alcanesulfónicos/toxicidad , Animales , Fluorocarburos/toxicidad , Masculino , Ratas , Hormonas Tiroideas/metabolismo , Transcriptoma
17.
Environ Pollut ; 304: 119242, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35378198

RESUMEN

Endocrine disrupting chemicals (EDCs) are a matter of great concern. They are ubiquitous in the environment, are considered harmful to humans and wildlife, yet remain challenging to identify based on current international test guidelines and regulatory frameworks. For a compound to be identified as an EDC within the EU regulatory system, a plausible link between an endocrine mode-of-action and an adverse effect outcome in an intact organism must be established. This requires in-depth knowledge about molecular pathways regulating normal development and function in animals and humans in order to elucidate causes for disease. Although our knowledge about the role of the endocrine system in animal development and function is substantial, it remains challenging to predict endocrine-related disease outcomes in intact animals based on non-animal test data. A main reason for this is that our knowledge about mechanism-of-action are still lacking for essential causal components, coupled with the sizeable challenge of mimicking the complex multi-organ endocrine system by methodological reductionism. Herein, we highlight this challenge by drawing examples from male reproductive toxicity, which is an area that has been at the forefront of EDC research since its inception. We discuss the importance of increased focus on characterizing mechanism-of-action for EDC-induced adverse health effects. This is so we can design more robust and reliable testing strategies using non-animal test methods for predictive toxicology; both to improve chemical risk assessment in general, but also to allow for considerable reduction and replacement of animal experiments in chemicals testing of the 21st Century.


Asunto(s)
Disruptores Endocrinos , Sistema Endocrino , Animales , Animales Salvajes , Disruptores Endocrinos/toxicidad , Masculino , Reproducción , Medición de Riesgo/métodos
18.
Toxicol Appl Pharmacol ; 250(3): 278-90, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21059369

RESUMEN

Octyl Methoxycinnamate (OMC) is a frequently used UV-filter in sunscreens and other cosmetics. The aim of the present study was to address the potential endocrine disrupting properties of OMC, and to investigate how OMC induced changes in thyroid hormone levels would be related to the neurological development of treated offspring. Groups of 14-18 pregnant Wistar rats were dosed with 0, 500, 750 or 1000 mg OMC/kg bw/day during gestation and lactation. Serum thyroxine (T(4)), testosterone, estradiol and progesterone levels were measured in dams and offspring. Anogenital distance, nipple retention, postnatal growth and timing of sexual maturation were assessed. On postnatal day 16, gene expression in prostate and testes, and weight and histopathology of the thyroid gland, liver, adrenals, prostate, testes, epididymis and ovaries were measured. After weaning, offspring were evaluated in a battery of behavioral and neurophysiological tests, including tests of activity, startle response, cognitive and auditory function. In adult animals, reproductive organ weights and semen quality were investigated. Thyroxine (T(4)) levels showed a very marked decrease during the dosing period in all dosed dams, but were less severely affected in the offspring. On postnatal day 16, high dose male offspring showed reduced relative prostate and testis weights, and a dose-dependent decrease in testosterone levels. In OMC exposed female offspring, motor activity levels were decreased, while low and high dose males showed improved spatial learning abilities. The observed behavioral changes were probably not mediated solely by early T(4) deficiencies, as the observed effects differed from those seen in other studies of developmental hypothyroxinemia. At eight months of age, sperm counts were reduced in all three OMC-dosed groups, and prostate weights were reduced in the highest dose group. Taken together, these results indicate that perinatal OMC-exposure can affect both the reproductive and neurological development of rat offspring, which may be a cause of concern, as humans are systematically exposed to the compound through usage of sunscreens and other cosmetics.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cinamatos/toxicidad , Disruptores Endocrinos/toxicidad , Audición/efectos de los fármacos , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Protectores Solares/toxicidad , Animales , Cinamatos/administración & dosificación , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/administración & dosificación , Estradiol/sangre , Femenino , Crecimiento/efectos de los fármacos , Lactancia/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Progesterona/sangre , Ratas , Ratas Wistar , Reflejo de Sobresalto/efectos de los fármacos , Semen/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Protectores Solares/administración & dosificación , Testosterona/sangre , Tiroxina/sangre
19.
Toxicol Lett ; 339: 78-87, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387635

RESUMEN

Obesity is a complex disease with many causes, including a possible role for environmental chemicals. Perfluorohexane sulfonate (PFHxS) is one of many per- and polyfluoroalkyl substances (PFASs) frequently detected in humans and it is suspected to be an obesogenic compound. We examined the potential long-term effects of PFHxS on metabolic parameters in rats after developmental exposure to 0.05, 5 or 25 mg/kg bw/day, with or without co-exposure to a background mixture of twelve endocrine disrupting chemicals (EDmix). Both male and female offspring showed signs of lower birth weight following intrauterine exposure. Female offspring exposed to both PFHxS and EDmix had increased body weight in adulthood. The retroperitoneal fat pad was larger in the PFHxS-exposed female offspring when compared to those exposed to EDmix alone. An attempt to detect putative molecular markers in the fat tissue by performing whole transcriptome profiling revealed no significant changes between groups and there were no significant effects on plasma leptin levels in exposed females. Our results show that early life exposure to endocrine disrupting chemicals can influence body weight later in life, but the effect is not necessarily reflected in changed gene expression in the fat tissue.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Disruptores Endocrinos/metabolismo , Disruptores Endocrinos/toxicidad , Obesidad/inducido químicamente , Ácidos Sulfónicos/metabolismo , Ácidos Sulfónicos/toxicidad , Aumento de Peso/efectos de los fármacos , Adipocitos/metabolismo , Adulto , Animales , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Fluorocarburos , Humanos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas
20.
Front Toxicol ; 3: 730752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295101

RESUMEN

Areola/nipple retention (NR) is an established biomarker for an anti-androgenic mode of action in rat toxicity studies. It is a mandatory measurement under several OECD test guidelines and is typically assessed in combination with anogenital distance (AGD). Both NR and AGD are considered retrospective biomarkers of insufficient androgen signaling during the masculinization programming window in male fetuses. However, there are still aspects concerning NR as a biomarker for endocrine disruption that remains to be clarified. For instance, can NR be regarded a permanent adverse effect? Is it a redundant measurement if AGD is assessed in the same study? Is NR equally sensitive and specific to anti-androgenic chemical substances as a shortening of male AGD? In this review we discuss these and other aspects concerning the use of NR as a biomarker in toxicity studies. We have collected available literature from rat toxicity studies that have reported on NR and synthesized the data in order to draw a clearer picture about the sensitivity and specificity of NR as an effect biomarker for an anti-androgenic mode of action, including comparisons to AGD measurements. We carefully conclude that NR and AGD in rats for the most part display similar sensitivity and specificity, but that there are clear exceptions which support the continued assessment of both endpoints in relevant reproductive toxicity studies. Available literature also support the view that NR in infant male rats signifies a high risk for permanent nipples in adulthood. Finally, the literature suggests that the mechanisms of action leading from a chemical stressor event to either NR or short AGD in male offspring are overlapping with respect to canonical androgen signaling, yet differ with respect to other mechanisms of action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA