Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36555796

RESUMEN

Fatty acyl reductase (FAR) is a crucial enzyme that catalyzes the NADPH-dependent reduction of fatty acyl-CoA or acyl-ACP substrates to primary fatty alcohols, which in turn acts as intermediate metabolites or metabolic end products to participate in the formation of plant extracellular lipid protective barriers (e.g., cuticular wax, sporopollenin, suberin, and taproot wax). FARs are widely present across plant evolution processes and play conserved roles during lipid synthesis. In this review, we provide a comprehensive view of FAR family enzymes, including phylogenetic analysis, conserved structural domains, substrate specificity, subcellular localization, tissue-specific expression patterns, their varied functions in lipid biosynthesis, and the regulation mechanism of FAR activity. Finally, we pose several questions to be addressed, such as the roles of FARs in tryphine, the interactions between transcription factors (TFs) and FARs in various environments, and the identification of post-transcriptional, translational, and post-translational regulators.


Asunto(s)
Aldehído Oxidorreductasas , Oxidorreductasas , Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo , Alcoholes Grasos , Especificidad por Sustrato
2.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35457268

RESUMEN

3-ketoacyl-CoA synthases (KCSs), as components of a fatty acid elongase (FAE) complex, play key roles in determining the chain length of very-long-chain fatty acids (VLCFAs). KCS6, taking a predominate role during the elongation from C26 to C28, is well known to play an important role in wax synthesis. KCS5 is one paralog of KCS6 and its role in wax synthesis remains unknown. Wax phenotype analysis showed that in kcs5 mutants, the total amounts of wax components derived from carbon 32 (C32) and C34 were apparently decreased in leaves, and those of C26 to C32 derivatives were obviously decreased in flowers. Heterologous yeast expression analysis showed that KCS5 alone displayed specificity towards C24 to C28 acids, and its coordination with CER2 and CER26 catalyzed the elongation of acids exceeding C28, especially displaying higher activity towards C28 acids than KCS6. BiLC experiments identified that KCS5 physically interacts with CER2 and CER26. Wax phenotype analysis of different organs in kcs5 and kcs6 single or double mutants showed that KCS6 mutation causes greater effects on the wax synthesis than KCS5 mutation in the tested organs, and simultaneous repression of both protein activities caused additive effects, suggesting that during the wax biosynthesis process, KCS5 and KCS6 play redundant roles, among which KCS6 plays a major role. In addition, simultaneous mutations of two genes nearly block drought-induced wax production, indicating that the reactions catalyzed by KCS5 and KCS6 play a critical role in the wax biosynthesis in response to drought.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ceras , Flores/genética , Flores/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Ceras/metabolismo
3.
Molecules ; 27(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36235263

RESUMEN

A poor diet, resulting in malnutrition, is a critical challenge that leads to a variety of metabolic disorders, including obesity, diabetes, and cardiovascular diseases. Mentha species are famous as therapeutic herbs and have long served as herbal medicine. Recently, the demand for its products, such as herbal drugs, medicines, and natural herbal formulations, has increased significantly. However, the available literature lacks a thorough overview of Mentha phytochemicals' effects for reducing malnutritional risks against cardiovascular diseases. In this context, we aimed to review the recent advances of Mentha phytochemicals and future challenges for reducing malnutritional risks in cardiovascular patients. Current studies indicated that Mentha species phytochemicals possess unique antimicrobial, antidiabetic, cytotoxic, and antioxidant potential, which can be used as herbal medicine directly or indirectly (such as food ingredients) and are effective in controlling and curing cardiovascular diseases. The presence of aromatic and flavor compounds of Mentha species greatly enhance the nutritional values of the food. Further interdisciplinary investigations are pivotal to explore main volatile compounds, synergistic actions of phytochemicals, organoleptic effects, and stability of Mentha sp. phytochemicals.


Asunto(s)
Antiinfecciosos , Enfermedades Cardiovasculares , Ingredientes Alimentarios , Mentha , Plantas Medicinales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Humanos , Hipoglucemiantes , Mentha/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Plantas Medicinales/química
4.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234819

RESUMEN

Some soil microbes, with their diverse inhabitance, biologically active metabolites, and endospore formation, gave them characteristic predominance and recognition among other microbial communities. The present study collected ten soil samples from green land, agricultural and marshy soil sites of Khyber Pakhtunkhwa, Pakistan. After culturing on described media, the bacterial isolates were identified through phenotypic, biochemical and phylogenetic analysis. Our phylogenetic analysis revealed three bacterial isolates, A6S7, A1S6, and A1S10, showing 99% nucleotides sequence similarity with Brevibacillus formosus, Bacillus Subtilis and Paenibacillus dendritiformis. The crude extract was prepared from bacterial isolates to assess the anti-bacterial potential against various targeted multidrug-resistant strains (MDRS), including Acinetobacter baumannii (ATCC 19606), Methicillin-resistant Staphylococcus aureus (MRSA) (BAA-1683), Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (BAA-2108), Staphylococcus aureus (ATCC 292013), Escherichia coli (ATCC25922) and Salmonella typhi (ATCC 14028). Our analysis revealed that all bacterial extracts possess activity against Gram-negative and Gram-positive bacteria at a concentration of 5 mg/mL, efficiently restricting the growth of E. coli compared with positive control ciprofloxacin. The study concluded that the identified species have the potential to produce antimicrobial compounds which can be used to control different microbial infections, especially MDRS. Moreover, the analysis of the bacterial extracts through GC-MS indicated the presence of different antimicrobial compounds such as propanoic acid, oxalic acid, phenol and hexadecanoic acid.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Antibacterianos/farmacología , Ciprofloxacina , Mezclas Complejas , Escherichia coli , Pruebas de Sensibilidad Microbiana , Nucleótidos , Ácido Oxálico , Ácido Palmítico , Fenoles , Filogenia , Propionatos , Suelo
5.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502106

RESUMEN

Cutin and wax are the main precursors of the cuticle that covers the aerial parts of plants and provide protection against biotic and abiotic stresses. Long-chain acyl-CoA synthetases (LACSs) play diversified roles in the synthesis of cutin, wax, and triacylglycerol (TAG). Most of the information concerned with LACS functions is obtained from model plants, whereas the roles of LACS genes in Glycine max are less known. Here, we have identified 19 LACS genes in Glycine max, an important crop plant, and further focused our attention on 4 LACS2 genes (named as GmLACS2-1, 2, 3, 4, respectively). These GmLACS2 genes display different expression patterns in various organs and also show different responses to abiotic stresses, implying that these genes might play diversified functions during plant growth and against stresses. To further identify the role of GmLACS2-3, greatly induced by abiotic stresses, we transformed a construct containing its full length of coding sequence into Arabidopsis. The expression of GmLACS2-3 in an Arabidopsis atlacs2 mutant greatly suppressed its phenotype, suggesting it plays conserved roles with that of AtLACS2. The overexpression of GmLACS2-3 in wild-type plants significantly increased the amounts of cutin and suberin but had little effect on wax amounts, indicating the specific role of GmLACS2-3 in the synthesis of cutin and suberin. In addition, these GmLACS2-3 overexpressing plants showed enhanced drought tolerance. Taken together, our study deepens our understanding of the functions of LACS genes in different plants and also provides a clue for cultivating crops with strong drought resistance.


Asunto(s)
Coenzima A Ligasas/metabolismo , Glycine max/genética , Lípidos/biosíntesis , Lípidos de la Membrana/biosíntesis , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Clonación Molecular , Coenzima A Ligasas/genética , Proteínas de Plantas/genética , Glycine max/metabolismo
6.
Microb Pathog ; 140: 103966, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31911192

RESUMEN

Replacing agrochemicals with plant growth promoting bacteria (PGPB) may offset some of the environmental impacts of food production. The objectives of this study were to (1) isolate and characterize bacterial strains from tomato rhizosphere, including root, shoot and leaf, (2) select and identify the most promising PGPB strains, (3) verify the phytostimulatory activity and mineral uptake potential of selected strains. Bacterial strains isolated from tomato rhizosphere, were screened for phosphorous (P) solubilization, production of indole acetic acid (IAA), amylase activity, antibiotic resistance, and quick test strip (QTS) for biochemical characterization. The tested strains, positive for all five of these assays were selected for molecular identification and subjected to greenhouse growth trails with tomato and mung bean. Two strains were selected and identified as Bacillus cereus (B. cereus) isolated from rhizosphere and Klebsiella variicola (K. variicola) isolated from root endosphere using 16s rRNA sequences. Both strains produced IAA, gibberellic acid (GA3) and kinetin, however B. cereus showed potential GA3 and IAA production as compared to K. variicola. In tomato, only one growth variable (shoot length) was increased over the control by one of the selected bacterial strains (B. cereus). In mung bean, inoculation with either strain B. cereus or K. variicola increased shoot length and dry weight. Moreover, our results showed that the use of PGPB significantly increased plant growth and Fe, Zn, Ca, Mg, Cu, Na and K contents of plants. It seems that evaluated strains had a higher ability in boosting plant growth and higher yield.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología del Suelo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Bacillus cereus/clasificación , Bacillus cereus/genética , Bacillus cereus/aislamiento & purificación , Bacillus cereus/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Klebsiella/clasificación , Klebsiella/genética , Klebsiella/aislamiento & purificación , Klebsiella/metabolismo , Filogenia , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Rizosfera
7.
Microb Pathog ; 144: 104188, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32272217

RESUMEN

The bactericidal activity of metal oxide nanoparticles (NPs) offers extensive opportunities in bioengineering and biomedicines. Bioengineered transition metals used in various forms against lethal microbes. In this study, Cadmium Oxide nanoparticles (CdO-NPs) were prepared through the co-precipitation method using fungal strain Penicillium oxalicum and cadmium acetate solution. The structure and elemental composition of the prepared NPs were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis absorption spectroscopy, scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Antibacterial activity was assessed through well diffusion method against Staphylococcus aureus (S. aureus), Shigella dysenteriae (S. dysenteriae), and Pseudomonas aeruginosa (P. aeruginosa). In addition, reactive oxygen species (ROS), reducing sugars and protein leakage contribution was examined against selected strains. The XRD analysis proved that the synthesized CdO-NPs possess a crystalline structure with an average crystalline size of 40-80 nm. FTIR confirmed the presence of organic compounds on the particle surface, while UV showed stability of the particles. SEM and EDS confirmed that CdO-NPs were successfully prepared and spherical. The maximum zone of inhibition against S. dysenteriae and P. aeruginosa was found and showed a less optical density of 0.086 after 18 h. ROS, reducing sugar, and protein leakage assay showed a significant difference as compared to control. Based on the present study, it is recommended that microbial mediated synthesized nanoparticles can be used as biomedicines for the treatment of different types of bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Compuestos de Cadmio/farmacología , Nanopartículas del Metal/química , Estrés Oxidativo/efectos de los fármacos , Óxidos/farmacología , Antibacterianos/química , Proteínas Bacterianas , Compuestos de Cadmio/química , Pruebas de Sensibilidad Microbiana , Óxidos/química , Tamaño de la Partícula , Penicillium , Difracción de Rayos X
9.
Microsc Res Tech ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623772

RESUMEN

This research is to examine the macromorphological and foliar epidermal anatomical features of Lilium rosthornii Diels and its ability to plastically adapt to environmental forces, which is crucial for its taxonomic classification. L. rosthornii has macromorphological characteristics such as linear to lanceolate leaves of up to 20 cm in length and 2-3 cm in breadth, grouped in a whorled pattern. The blooms are voluminous and conspicuous, measuring up to 15 cm in diameter and are supported by a towering stalk that grows up to 1 m in height. The foliar epidermal structure of L. rosthornii exhibits a stomatal length of 82.02 ± 5.77 µm and a width of 29.19 ± 1.39 µm. These measurements suggest that the plant's stomata are influenced by its ploidy levels and may serve as adaptive mechanisms to enhance water consumption efficiency. The leaf structure shows a significant thickness of 398.74 ± 97.96 µm, which might potentially contribute to its ability to withstand environmental challenges. Additionally, the presence of defensive adaptations in the top and lower epidermal layers further supports this observation. The palisade tissue measurement (58.87 ± 9.56 m) and spongy tissue measurement (32.42 ± 12.72 µm) indicate a potential for photosynthetic optimization. Furthermore, there is a possible correlation between the vascular bundle width (28.15 ± 6.52 °m) and the efficiency of nutrition delivery. The results of this study emphasize the notable diversity in the foliar structures of L. rosthornii, offering valuable understanding of its morphological adaptations that have ecological and taxonomic significance. The findings provide a deeper comprehension of the potential impact of anatomical characteristics on plant function and categorization, hence providing significant insights to the domain of plant morphology and systematics. RESEARCH HIGHLIGHTS: Examines Lilium rosthornii's anatomical features and environmental adaptability for taxonomic relevance. Leaf thickness and epidermal defenses indicate resilience to environmental stress. Highlights the diversity in L. rosthornii's foliar structures, with implications for ecological and taxonomic significance Offers insights into the impact of anatomical characteristics on plant function and classification.

10.
Antioxidants (Basel) ; 13(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38671884

RESUMEN

The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.

11.
Sci Total Environ ; 926: 171862, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527538

RESUMEN

Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.


Asunto(s)
Nanoestructuras , Suelo , Conservación de los Recursos Naturales , Ecosistema , Análisis de Peligros y Puntos de Control Críticos , Agricultura/métodos , Nanotecnología/métodos , Plantas , Fertilizantes/análisis
12.
Plants (Basel) ; 12(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771572

RESUMEN

In the natural environment, plants grow and interact with both conspecific and heterospecific neighbours under different environmental conditions. In this study, we tested whether Chenopodium quinoa Willd genotypes differ in growth performance when grown with kin and non-kin under nutrient limitation in pot partitioning treatments. Biomass accumulation, allocation, organ efficiency, and specific leaf area were measured at the end of the experiment. Response variables were differentially impacted by kinship, fertility, and barrier. Total dry mass, shoot dry mass, and root and stem allocation were greater for plants grown with kin in connected pots than with non-kin in connected pots across the nutrient treatments. Kin connected and disconnected plants had a greater specific root length, specific stem length, and average leaf mass than non-kin connected and disconnected plants. Non-kin connected and disconnected plants had greater LAR and SLA than kin connected and disconnected plants under low- and high-nutrient treatments. Plants always grew better in the presence of their kin than non-kin. These results conclude that quinoa plant production benefits from planting closely related individuals under both high- and low-nutrient conditions.

13.
Microorganisms ; 11(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37512835

RESUMEN

Throughout the tropical and subtropical climates, the genus Citrus can be found. The current study was conducted to extract the Citrus sinensis peel oil and evaluate its antibacterial, antifungal and antiparasitic potential. Petroleum ether was used to extract the C. sinensis peel oil through a Soxhlet apparatus. The antimicrobial and antifungal potential was determined via agar well diffusion method and minimum inhibitory concentrations (MIC) were calculated (test bacterial strains: Staphylococcus aureus, Escherichia coli and Streptococcus agalactiae; test fungal strains: Aspergillus flavus, Aspergillus niger, Altrnaria alternata). Antiparasitic activity against Leishmaniatropica was determined following standard protocol using amphotericin-B as positive and Dimethyl Sulfoxide (DMSO) as a negative control and the percentage inhibition was calculated. The oil extracted was brownish yellow with a tangy smell, water-insoluble, density (0.778 g/cm3) and specific gravity (0.843 g/cm). In antibacterial activity, the diameter of the zone of inhibition was maximum against E. coli (14 mm) and minimum for S. agalactiae (10 mm). While in antifungal activity diameter of the zone of inhibition was maximum against A. flavus (12.5 mm) and minimum for A. alternata (8.6 mm). S. agalactiae exhibited the minimum MIC value (6 mg/mL) and in fungal strains A. alternata exhibited the minimum value (2 mm). Citrus sinensis peel oil displayed antileishmanial efficiency of 60% at 50 µg/mL concentration after 48 h of incubation. C. sinensis peel oil demonstrated antimicrobial capabilities, implying that it could be used as a natural preservative in food or as an effective treatment against a variety of pathogenic organisms. Industries should extract oil from the waste of citrus fruits which will be beneficial from an economic point of view.

14.
Antioxidants (Basel) ; 12(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36829828

RESUMEN

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a pivotal role in the dynamic cell signaling systems in plants, even under biotic and abiotic stress conditions. Over the past two decades, various studies have endorsed the notion that these molecules can act as intracellular and intercellular signaling molecules at a very low concentration to control plant growth and development, symbiotic association, and defense mechanisms in response to biotic and abiotic stress conditions. However, the upsurge of ROS and RNS under stressful conditions can lead to cell damage, retarded growth, and delayed development of plants. As signaling molecules, ROS and RNS have gained great attention from plant scientists and have been studied under different developmental stages of plants. However, the role of RNS and RNS signaling in plant-microbe interactions is still unknown. Different organelles of plant cells contain the enzymes necessary for the formation of ROS and RNS as well as their scavengers, and the spatial and temporal positions of these enzymes determine the signaling pathways. In the present review, we aimed to report the production of ROS and RNS, their role as signaling molecules during plant-microbe interactions, and the antioxidant system as a balancing system in the synthesis and elimination of these species.

15.
Heliyon ; 9(5): e15909, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206037

RESUMEN

The present study examined the biological potential and phytochemicals of Sophora mollis, Mucuna pruriens, and Indigofera atropurpurea methanolic leaf extracts. In vitro anti-acetylcholinesterase and anti-lipase assays were performed using different concentrations of plant extracts, and the IC50 values were determined. The cytotoxic potential of the selected plant extracts was assessed against HeLa, PC3, and 3T3 cell lines using an MTT assay. S. mollis leaf extract displayed the highest inhibition percentage (114.60% ± 19.95 at 1000 µg/mL) for the anti-acetylcholinesterase activity with a prominent IC50 value of 75.9 µg/mL. The anti-lipase potential was highest with the M. pruriens leaf extract (355.5 µg/mL IC50), followed by the S. mollis extract (862.7 µg/mL IC50). Among the cell lines tested, the cytotoxic potential of the I. atropurpurea extract (91.1 ppm IC50) against the PC3 cell line was promising. High-performance liquid chromatography revealed gallic acid, chlorogenic acid, caffeic acid, vanillic acid, rutin trihydrate, and quercetin dihydrate in varying concentrations in all plant species. The concentration of chlorogenic acid (69.09 ppm) was highest in M. pruriens, and the caffeic acid concentration (45.20 ppm) was higher in S. mollis. This paper reports the presence of bioactive therapeutic compounds in selected species of the Fabaceae family that could be micro-propagated, isolated, and utilized in pharmaceutical industries.

16.
Plants (Basel) ; 12(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687353

RESUMEN

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of nearly all land-dwelling plants, increasing growth and productivity, especially during abiotic stress. AMF improves plant development by improving nutrient acquisition, such as phosphorus, water, and mineral uptake. AMF improves plant tolerance and resilience to abiotic stressors such as drought, salt, and heavy metal toxicity. These benefits come from the arbuscular mycorrhizal interface, which lets fungal and plant partners exchange nutrients, signalling molecules, and protective chemical compounds. Plants' antioxidant defence systems, osmotic adjustment, and hormone regulation are also affected by AMF infestation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress conditions. As a result of its positive effects on soil structure, nutrient cycling, and carbon sequestration, AMF contributes to the maintenance of resilient ecosystems. The effects of AMFs on plant growth and ecological stability are species- and environment-specific. AMF's growth-regulating, productivity-enhancing role in abiotic stress alleviation under abiotic stress is reviewed. More research is needed to understand the molecular mechanisms that drive AMF-plant interactions and their responses to abiotic stresses. AMF triggers plants' morphological, physiological, and molecular responses to abiotic stress. Water and nutrient acquisition, plant development, and abiotic stress tolerance are improved by arbuscular mycorrhizal symbiosis. In plants, AMF colonization modulates antioxidant defense mechanisms, osmotic adjustment, and hormonal regulation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress circumstances. AMF-mediated effects are also enhanced by essential oils (EOs), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA), and phosphorus (P). Understanding how AMF increases plant adaptation and reduces abiotic stress will help sustain agriculture, ecosystem management, and climate change mitigation. Arbuscular mycorrhizal fungi (AMF) have gained prominence in agriculture due to their multifaceted roles in promoting plant health and productivity. This review delves into how AMF influences plant growth and nutrient absorption, especially under challenging environmental conditions. We further explore the extent to which AMF bolsters plant resilience and growth during stress.

17.
Microsc Res Tech ; 85(9): 3217-3236, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35716090

RESUMEN

In this research, 25 medicinally used Lamiaceae species belonging to 20 genera have been studied and identified for the nine disorders. We used scanning electron microscopy (SEM) for qualitative and quantitative morphological character identification. The micromorphological characters observed here were important for distinguishing the studied taxa. The highest medicinal values were reported for Vitex negundo and Scutellaria baicalensis for all considered categories except urinary and otorhinolaryngology disorders. The foliar epidermal anatomical characteristics revealed that the micromorphological features of the Lamiaceae species provide taxonomically significant and accurate identification information to delimitate the family species. Moreover, we focused on both qualitative (epidermal cell shape, stomata type, stomatal pore shape, subsidiary cell shape, glandular trichomes, and non-glandular trichome shape) as well as quantitative features (epidermal cell size, stomata size, stomatal pore size, subsidiary cell size, and trichomes size). The trichomes diversity was different in most species' on adaxial and abaxial surfaces. In most species, anomocytic stomata were observed, but other types such as diacytic, paracytic, and tetracytic type stomata were also examined. The diverse pattern of anatomical characters suggests that the studied taxa provide insight evidence for the taxonomic observation of the Traditional Chinese Medicinal plants from the Lamiaceae. This work sets an avenue for future research and taxonomic exploration of medicinal flora through microscopic investigations. RESEARCH HIGHLIGHTS: This research offers a thorough microscopic identification of the family Lamiaceae. Taxonomic information on the trichome characters and types for the accurate authentication. Qualitative and quantitative characterization of 25 medicinally used Lamiaceae taxa.


Asunto(s)
Lamiaceae , Epidermis de la Planta , Lamiaceae/anatomía & histología , Microscopía Electrónica de Rastreo , Epidermis de la Planta/ultraestructura , Hojas de la Planta/anatomía & histología , Estomas de Plantas/ultraestructura , Tricomas/ultraestructura
18.
Life (Basel) ; 12(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36431057

RESUMEN

Environmental variations caused by global climate change significantly affect plant yield and productivity. Because water scarcity is one of the most significant risks to agriculture's future, improving the performance of plants to cope with water stress is critical. Our research scrutinized the impact of melatonin application on the photosynthetic machinery, photosynthetic physiology, root system, osmoprotectant accumulation, and oxidative stress in tomato plants during drought. The results showed that melatonin-treated tomato plants had remarkably higher water levels, gas exchange activities, root system morphological parameters (average diameter, root activity, root forks, projected area, root crossings, root volume, root surface area, root length, root tips, and root numbers), osmoprotectant (proline, trehalose, fructose, sucrose, and GB) accumulation, and transcript levels of the photosynthetic genes SlPsb28, SlPetF, SlPsbP, SlPsbQ, SlPetE, and SlPsbW. In addition, melatonin effectively maintained the plants' photosynthetic physiology. Moreover, melatonin treatment maintained the soluble protein content and antioxidant capacity during drought. Melatonin application also resulted in membrane stability, evidenced by less electrolyte leakage and lower H2O2, MDA, and O2- levels in the drought-stress environment. Additionally, melatonin application enhanced the antioxidant defense enzymes and antioxidant-stress-resistance-related gene (SlCAT1, SlAPX, SlGR, SlDHAR, SlPOD, and SOD) transcript levels in plants. These outcomes imply that the impacts of melatonin treatment on improving drought resistance could be ascribed to the mitigation of photosynthetic function inhibition, the enhancement of the water status, and the alleviation of oxidative stress in tomato plants. Our study findings reveal new and incredible aspects of the response of melatonin-treated tomato plants to drought stress and provide a list of candidate targets for increasing plant tolerance to the drought-stress environment.

19.
Genes (Basel) ; 13(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36292584

RESUMEN

Melatonin was discovered in plants in the late nineties, but its role, signaling, and crosstalk with other phytohormones remain unknown. Research on melatonin in plants has risen dramatically in recent years and the role of this putative plant hormone under biotic and abiotic stress conditions has been reported. In the present review, we discuss the main functions of melatonin in the growth and development of plants, its role under abiotic stresses, such as water stress (waterlogging and drought), extreme temperature (low and high), salinity, heavy metal, and light-induced stress. Similarly, we also discuss the role of melatonin under biotic stresses (antiviral, antibacterial, and antifungal effects). Moreover, the present review meticulously discusses the crosstalk of melatonin with other phytohormones such as auxins, gibberellic acids, cytokinins, ethylene, and salicylic acid under normal and stressful conditions and reports melatonin receptors and signaling in plants. All these aspects of melatonin suggest that phytomelatonin is a key player in crop improvement and biotic and abiotic stress regulation.


Asunto(s)
Melatonina , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Receptores de Melatonina , Antifúngicos/farmacología , Plantas , Citocininas , Etilenos/farmacología , Ácidos Indolacéticos , Antibacterianos/farmacología , Antivirales/farmacología , Salicilatos/farmacología
20.
Plant Physiol Biochem ; 161: 1-11, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33556720

RESUMEN

In plants, Long-chain acyl-CoA synthetases (LACSs) play key roles in activating fatty acids to fatty acyl-CoA thioesters, which are then further involved in lipid synthesis and fatty acid catabolism. LACSs have been intensively studied in Arabidopsis, but its evolutionary relationship in green plants is unexplored. In this study, we performed a comprehensive genome-wide analysis of the LACS gene family across green plants followed by phylogenetic clustering analysis, gene structure determination, detection of conserved motifs, gene expression in tissues and subcellular localization. Our results identified LACS genes in 122 plant species including algae, low land plants (i.e., mosses and lycophytes), monocots, and eudicots. In total, 697 sequences were identified, and 629 sequences were selected because of alignment and some duplication errors. The retrieved amino acid sequences ranged from 271 to 1056 residues and diversified in intron/exon patterns in different LACSs. Phylogenetic clustering grouped LACS gene family into six major clades with distinct potential functions. This classification is well supported by examining gene structure and conserved motifs. Also, gene expression analysis and subcellular localization substantiate with clade division in the phylogeny, indicating that the evolutionary pattern is visible in their functionality. Additionally, experimental analysis of lacs2 mutant validated that LACS2 plays key roles in suberin synthesis. Thus, our study not only provides an evolutionary mechanism underlying functional diversification but also lays the foundation for further elucidation of the LACS gene family.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Coenzima A , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Perfilación de la Expresión Génica , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA