Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(20): 200402, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27258857

RESUMEN

We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global-topological-properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by local-geometrical-properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave packet's position in each unit cell, i.e., the polarization.

2.
New J Phys ; 182016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26903778

RESUMEN

We directly measured the normalized s-wave scattering cross-section of ultracold 40K atoms across a magnetic-field Feshbach resonance by colliding pairs of degenerate Fermi gases (DFGs) and imaging the scattered atoms. We extracted the scattered fraction for a range of bias magnetic fields, and measured the resonance location to be B0 = 20.206(15) mT with width Δ = 1.0(5) mT. To optimize the signal-to-noise ratio of atom number in scattering images, we developed techniques to interpret absorption images in a regime where recoil induced detuning corrections are significant. These imaging techniques are generally applicable to experiments with lighter alkalis that would benefit from maximizing signal-to-noise ratio on atom number counting at the expense of spatial imaging resolution.

3.
Science ; 349(6255): 1514-8, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404830

RESUMEN

Bringing ultracold atomic gases into the quantum Hall regime is challenging. We engineered an effective magnetic field in a two-dimensional lattice with an elongated-strip geometry, consisting of the sites of an optical lattice in the long direction and of three internal atomic spin states in the short direction. We imaged the localized states of atomic Bose-Einstein condensates in this strip; via excitation dynamics, we further observed both the skipping orbits of excited atoms traveling down the system's edges, analogous to edge magnetoplasmons in two-dimensional electron systems, and a dynamical Hall effect for bulk excitations. Our technique involves minimal heating, which will be important for spectroscopic measurements of the Hofstadter butterfly and realizations of Laughlin's charge pump.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA