Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytoskeleton (Hoboken) ; 81(8): 382-392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38647032

RESUMEN

Vasodilator-stimulated phosphoprotein (VASP) family proteins play a crucial role in mediating the actin network architecture in the cytoskeleton. The Ena/VASP homology 2 (EVH2) domain in each of the four identical arms of the tetrameric VASP consists of a loading poly-Pro region, a G-actin-binding domain (GAB), and an F-actin-binding domain (FAB). Together, the poly-Pro, GAB, and FAB domains allow VASP to bind to sides of actin filaments in a bundle, and recruit profilin-G-actin to processively elongate the filaments. The atomic resolution structure of the ternary complex, consisting of the loading poly-Pro region and GAB domain of VASP with profilin-actin, has been solved over a decade ago; however, a detailed structure of the FAB-F-actin complex has not been resolved to date. Experimental insights, based on homology of the FAB domain with the C region of WASP, have been used to hypothesize that the FAB domain binds to the cleft between subdomains 1 and 3 of F-actin. Here, in order to develop our understanding of the VASP-actin complex, we first augment known structural information about the GAB domain binding to actin with the missing FAB domain-actin structure, which we predict using homology modeling and docking simulations. In earlier work, we used mutagenesis and kinetic modeling to study the role of domain-level binding-unbinding kinetics of Ena/VASP on actin filaments in a bundle, specifically on the side of actin filaments. We further look at the nature of the side-binding of the FAB domain of VASP at the atomistic level using our predicted structure, and tabulate effective mutation sites on the FAB domain that would disrupt the VASP-actin complex. We test the binding affinity of Ena with mutated FAB domain using total internal reflection fluorescence microscopy experiments. The binding affinity of VASP is affected significantly for the mutant, providing additional support for our predicted structure.


Asunto(s)
Actinas , Moléculas de Adhesión Celular , Proteínas de Microfilamentos , Fosfoproteínas , Unión Proteica , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Actinas/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Humanos , Sitios de Unión
2.
Commun Biol ; 7(1): 242, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418613

RESUMEN

The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through ß-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.


Asunto(s)
Membrana Dobles de Lípidos , Lípidos de la Membrana , Lípidos de la Membrana/metabolismo , Membrana Dobles de Lípidos/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA